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Supplementary Figure 1: QQ plot through permutation (a) and optimal test (b) from simulations under
the null. (c) shows the results from simulation with a mixed sample of sib pairs and nuclear families.
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Supplementary Figure 2: Power comparison with sib pair samples, in which half of the families have
at least 1 sick child, while other families are unaffected.
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Supplementary Figure 3: Power comparison with a mixed sample of sib pairs and nuclear families.



1 Null distribution of the GEE-KM statistic T’

To derive the asymptotic distribution of the statistic 7', as shown in equation
(4), denote A = 1(6p) = —E(2%) = 31", DIV 'D;, where 8p = (o, 0)’
is the true value of 0. Partition A as Axx, Axz, Azx, Azz according to the
dimensions of o and 3. From a Taylor series expansion, we get & — ag =
AU, (00) + 0p(1), where & is the MLE of a under the null.

From a Taylor expansion of U, (é), where 6 = (@,0) , we have

U.,(60) =[Us(80) — Aux(& — ap)] + 0, (1)
=[~Azx A Ux(80) + Uz(80)] + 0, (V')
Let C = (—A AL T), then U, ~ CU(6p). Denote B = E(U(6)UT(0y)) =

S DIV Cou(y;) Vi 'D;. As n — oo, BY/2U(6p) — N(0,I) in distribu-
tion.

T =UFWRWU,
={BY?U(0,)}T{BY2CTWRWCB/2}{B/?U(6,)}

P
- Z AkX%,l
k=1

where (A1,...,Ap) are the eigenvalues of BY2CTWRWCBY? and 7 ; are in-
dependent x? random variables. Cov(y;) in B is estimated by {y;—u;(00): } {y:—

wi(6o)i}"

2 Asymptotic approximation of the optimal-test
statistic

Following the original SKAT-O (Lee et al. 2012) derivation, denote Z = WCB/2 z =
Z-1,/p,M=2(zT2)"12T and Y = B~1/2U(y) ~ N(0,1), then

T=Y"Z[(1-pI+plpl}]Z"Y = (1 - p)YTZZTY + pp°YT22" Y

MZZ™™ =z(z72)"12722%z(z7z) ' 27




where Z.; is the jth column of Z.

T=1-p)YTZZTY + pp*YT72"Y
=(1-p)YFI-M)ZZT(1I-M)Y
+2(1-p)YT(I-M)ZZ™MY
+(1-p)YT(MZZ™ + MZZT - ZZ™M)Y +p°pYT2z7Y

(1—-p)YT(MZZ™™ + MZZT — ZZTM)Y + p’pYTzzTY
=(1—p) ?:1(ZTZ~J’)2
SOENEEFE

1
=v(p) ==Y 7Z2"Y
Vp) 75 Y 22

YT7zZTY + pp*YT7ZTY

where v(p) = pp*2" 2 + £ 301 (27Z.5)*.

Denote e = YT(I - M)ZZT(I - M)Y,¢ = YT(I - M)ZZTMY, 5 = YTzzTY,
as MzzT = z(272)" 127227 = zz7 (1 - M)zzT = 0, ¢ and 7 are asymptoti-
cally independent (Craig’s Theorem) under the null.

Since Y = B~/2U(#y) ~ N(0,1), we have

E()=E(YT(I-M)ZZTMY)
=tr((I—M)ZZ™™) = tr(M(I - M)ZZ")
=0

var(¢) =var(YT(I - M)ZZTMY)

=var {;YT [(I-M)ZZ™™ + (I-M)ZZ™M)T] Y}

:iQtr { [(T—M)ZZ™M + (1 - M)ZZTM)T]Q}
=tr (I-M)ZZ™™ - (I1-M)ZZ™™)"]
=tr(ZZTMZZT (1 — M))
cov(e, ¢) =cov(YT(I-M)ZZTI-M)Y, YT (I-M)ZZTMY)
:%COU(YT(I ~M)ZZTT-M)Y,YT[(I-M)ZZ™ + (I- M)ZZ"™M)T]Y)
=tr {I-M)ZZT(I-M)[I-M)ZZ™M + (I -M)ZZ"M)"]}
=tr {(I-M)ZZT(I1-M)(I-M)ZZ™M} +tr {1 -M)ZZ"(I - M)((I-M)ZZ"M)"}
=0
Similarly, we can show that cov(n,{) =0. Let k =e+2(, T = (1—p)s+7(p)n.
e and n are asymptotically independent under the null, ¢ is asymptotically

uncorrelated with € and 7. Since the Pearson correlation between 7 and « is 0,
we can approximate 1" as sum of two independent variables.



