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Improved Ancestry Estimation for both Genotyping
and Sequencing Data using Projection Procrustes
Analysis and Genotype Imputation

Chaolong Wang,1,* Xiaowei Zhan,2 Liming Liang,3,4 Gonçalo R. Abecasis,5 and Xihong Lin3

Accurate estimation of individual ancestry is important in genetic association studies, especially when a large number of samples are

collected from multiple sources. However, existing approaches developed for genome-wide SNP data do not work well with modest

amounts of genetic data, such as in targeted sequencing or exome chip genotyping experiments. We propose a statistical framework

to estimate individual ancestry in a principal component ancestry map generated by a reference set of individuals. This framework ex-

tends and improves upon our previous method for estimating ancestry using low-coverage sequence reads (LASER 1.0) to analyze either

genotyping or sequencing data. In particular, we introduce a projection Procrustes analysis approach that uses high-dimensional prin-

cipal components to estimate ancestry in a low-dimensional reference space. Using extensive simulations and empirical data examples,

we show that our newmethod (LASER 2.0), combined with genotype imputation on the reference individuals, can substantially outper-

form LASER 1.0 in estimating fine-scale genetic ancestry. Specifically, LASER 2.0 can accurately estimate fine-scale ancestry within

Europe using either exome chip genotypes or targeted sequencing data with off-target coverage as low as 0.053. Under the framework

of LASER 2.0, we can estimate individual ancestry in a shared reference space for samples assayed at different loci or by different tech-

niques. Therefore, our ancestry estimation method will accelerate discovery in disease association studies not only by helping model

ancestry within individual studies but also by facilitating combined analysis of genetic data from multiple sources.
Introduction

The advent of next-generation sequencing has greatly

expanded opportunities for investigation of the genetic

architecture of complex diseases. Although genome-wide

association studies (GWASs) have successfully identified

thousands of common variants associated with human dis-

eases and traits,1 these association variants often explain a

small proportion of the heritability and provide incom-

plete information about the functional mechanism of

the disease.2

Many recent studies have shifted their focus to rare

variants that are more likely to have direct functional

impacts on gene products. Because these variants are

rare, a large sample size and cost-effective approaches

(such as targeted sequencing of candidate genes or the

whole exome) are important to ensure sufficient statistical

power.3 More recently, studies have employed the exome

chip genotyping array, which includes protein-altering

variants discovered by large-scale exome sequencing

studies and provides a cost-effective way to assay rare var-

iants in a large number of exomes.4,5 Applications of

targeted sequencing and exome chip genotyping have

discovered several disease-associated rare coding variants,

leading to important biological insights for several com-

plex diseases.4–9

Control of population stratification is important for

large-scale genetic association studies to avoid spurious as-
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sociation signals caused by ancestry difference in the study

sample.10–13 Population structure can confound genetic

association tests even when all study subjects are Euro-

peans,14 highlighting the importance of estimating fine-

scale ancestry. Principal-component analysis (PCA) and

analogous dimension reduction techniques have been

widely used to disentangle complex genetic structure and

to control for population stratification in GWASs, where

genome-wide genotypes are available.15–20

Extensions of PCA-based methods have also been devel-

oped to estimate individual ancestry directly from low-

coverage sequencing data when genotypes cannot be

accurately estimated.21–23 For example, using the LASER

method (v.1.0) and genotypes of a set of reference individ-

uals from the Human Genome Diversity Project (HGDP),24

we can accurately estimate an individual’s continental

ancestry based on off-target sequence reads generated by

targeted or exome sequencing experiments.22 We have

applied LASER 1.0 to facilitate identification of additional

ancestry-matched controls from public resources to in-

crease statistical power in a targeted sequencing study of

age-related macular degeneration (AMD).8 However, esti-

mation of fine-scale ancestry within Europe remains

challenging when the sequencing depth is <0.13.22 Esti-

mation of fine-scale ancestry will become more chal-

lenging in the future, because fewer off-target reads will

be produced when the efficiency of the capture technology

in targeted sequencing experiments improves.
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Figure 1. Graphical Illustration of the Algorithm for Estimating
an Individual’s Genetic Ancestry using Genotype Data
This algorithm was implemented in the trace program as part of
the LASER 2.0 package. A similar algorithm for analyzing sequence
reads is illustrated in Figure S1.
As more genetic data are generated by different tech-

niques, joint analysis of data from multiple sources is

becoming an attractive approach to increase sample size

and statistical power for rare variant association studies.

Such analysis requires estimating individual ancestry for

different datasets in a consistent manner so that back-

ground ancestry can be carefully matched across datasets.

For example, if we can place both exome chip genotyped

samples and targeted sequenced samples into the same

reference ancestry space, we might be able to use exome

chip genotyped controls to boost statistical power in a

targeted sequencing study. The framework of LASER 1.0

can be extended to analyze genotyping data by construct-

ing a sample-specific PCA map for each individual using

markers that overlap with the reference panel and using

Procrustes analysis to transform the coordinates of the

study individual into the reference ancestry space.22,25

However, similar to the challenge in analyzing extremely

low-coverage sequencing data, we show that this simple

extension does not work well on exome chip genotyping

data, particularly when the goal is to estimate fine-scale

ancestry such as distinguishing different populations

within Europe.

To overcome the limitations of LASER 1.0 when the

amount of available data for each individual is small, we

introduce a novel approach based on projection Procrus-

tes analysis,26 which is implemented in LASER 2.0 for

analyzing either genotypes (Figure 1) or sequence reads
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(Figure S1). Different from the standard Procrustes anal-

ysis, which identifies optimal transformations, including

scaling, translation, rotation, and reflection, between

two sets of coordinates of the same dimension,27,28 pro-

jection Procrustes analysis enables projection from

a higher-dimensional space to a lower-dimensional

space.26 This approach can improve our ancestry estima-

tion by integrating ancestry information from higher-

order PCs of the sample-specific PCA map. We further

demonstrate that genotype imputation on the ancestry

reference panel, in combination with projection Procrus-

tes analysis, can substantially improve estimation of

fine-scale European ancestry for both exome chip geno-

typing data and low-coverage sequencing data. Using tar-

geted sequencing data from our AMD study,8 we show

that the improvement of ancestry estimation is more

evident for samples that have extremely low coverage in

the off-target regions and for which ancestry cannot be

accurately estimated via LASER 1.0.22 Overall, the novel

algorithm of LASER 2.0 enables us to obtain accurate ge-

netic ancestry information in several challenging settings

where LASER 1.0 doesn’t work well, including finer-scale

ancestry with extremely low coverage sequencing data

or with exome chip genotypes. Furthermore, LASER 2.0

can produce comparable ancestry estimates in a shared

ancestry space for samples assayed at different loci or by

different techniques. With these features, our estimates

will be useful in facilitating integrative analysis of

different data sources to increase statistical power for dis-

covery of disease susceptibility alleles.
Material and Methods

HGDP and POPRES Data
We used the Human Genome Diversity Project (HGDP) dataset24

as the reference panel for analysis of worldwide ancestry and

the European dataset from the Population Reference Sample

(POPRES)29 as the reference panel for analysis of European

ancestry. Quality control (QC) procedures for these two datasets

were described in Wang et al.22 After QC, the HGDP dataset in-

cludes genotypes across 632,958 autosomal SNPs for 938 unrelated

individuals from 53 worldwide populations, and the POPRES data-

set includes 318,682 autosomal SNPs for 1,385 unrelated individ-

uals from 37 European populations.
Imputed POPRES Data
We imputed the PORPES data using haplotypes of 1,092 individ-

uals sequenced in Phase 1 of the 1000 Genomes Project.30 We

first phased the POPRES data using MaCH31 with 500 hidden

Markov states and 30 iterations. We then used Minimac32 to

impute the POPRES data in chunks of 2,500 loci (with 500 over-

lapping loci between consecutive chunks). After imputation,

we excluded imputed SNPs that have minor allele frequency

(MAF) < 5% or estimated imputation r2 < 0.8, resulting in geno-

types for an additional 3,853,445 SNPs. Combining these

imputed genotypes with the original POPRES genotypes, we

created an expanded POPRES reference panel that includes

4,172,127 autosomal SNPs.
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AMD Data
The AMD targeted sequencing data consist of 3,158 samples.8

These data had previously been analyzed using LASER 1.022 and

we re-analyzed the data to illustrate the improvements in LASER

2.0. We defined off-target loci as loci that have mean coverage

<43 across all sequenced samples. After excluding bases with

mapping quality score < 30 (Phred scale) and recalibrated base

quality score < 20 (Phred scale), the average off-target coverage

is 0.1963 in loci overlapping with the HGDP data, 0.2153 in

loci overlapping with the POPRES data, and 0.3053 in loci over-

lapping with the expanded POPRES data after imputation. The

sequencing error rate at locus j of individual i, eij, was estimated us-

ing the recalibrated base quality scores in the BAM file for bases at

each locus after filtering low-quality bases. We also have GWAS

data (316,475 SNPs in total, including 47,237 SNPs that overlap

with the POPRES data) for 901 of these samples, enabling us to

compare ancestry estimates derived using targeted sequencing

data with those derived using GWAS genotypes.33
The LASER 2.0 Method
Overview

LASER 2.0 includes two programs (named trace and laser) imple-

menting a unified framework for estimating individual ancestry

using genotypes or sequence reads as input, respectively. The algo-

rithm for analyzing genotyped samples (trace) is illustrated in

Figure 1. We first construct a K-dimensional ancestry map by

applying PCA on genotypes of a set of N reference individuals.

For each study sample, we perform an additional PCA on geno-

types across overlapping markers between the study sample and

N reference individuals to obtain a K0-dimensional map of N þ 1

individuals (K0 R K). We then use projection Procrustes analysis

to identify an optimal set of transformations on the sample-spe-

cific PCA map to maximize its similarity to the reference ancestry

map.26 Using the transformations, we can place the study sample

into the reference ancestry map and obtain individual ancestry in-

formation. Unlike LASER 1.0,22 which uses the standard Procrustes

analysis (equivalent to K0 ¼ K), the projection Procrustes analysis

approach enables incorporation of additional information from

high-dimensional PCs to increase the accuracy and robustness of

our ancestry estimation. This procedure is repeated for all study

samples one at a time until all samples are placed into the same

reference ancestry space. The algorithm for analyzing sequenced

samples (laser) follows the same framework except that in

analyzing each sequenced sample, we simulate sequence reads

for the reference individuals to match the quality and coverage

pattern of the sequenced sample and perform PCA on the com-

bined sequencing data to obtain the sample-specific PCA map

(Figure S1). Simulation of sequence reads for the reference individ-

uals follow a binomial model described in Wang et al.22

Principal-Component Analysis

We use a standard PCA to construct the reference ancestry

space.15,22 Genotypes for N reference individuals across L loci are

coded as an N 3 L matrix G, in which Gij ¼ 0, 1, 2, or missing

for i ¼ 1, . N and j ¼ 1,2, . L. We impute the missing data in

G with corresponding column mean mj, and standardize G by

subtracting mj and dividing by standard deviation sj for all

columns (j ¼ 1,2, . L). Denoting the standardized genotype

matrix as QN 3 L, we calculate PCA coordinates by applying eigen-

value decomposition (EVD) of the N 3 N genetic relationship

matrix M0 ¼ QQT. The reference PCA coordinates are recorded as

an N 3 K matrix Y for the top K PCs.
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To compute sample-specific PCA for a genotyped sample h, we

focus on loci that are in the reference panel, denoted as a 13 L vec-

tor Sh. We standardize Sh using S
0
hj ¼ ðShj � mjÞ=sj for j ¼ 1,2, . L,

where mj and sj were previously computed using the reference ge-

notypes G. If Shj is missing, we impute Shj with mj so that S
0
hj ¼ 0.

To account for different levels of missing data in the study

samples, we compute M ¼ M0 � ~Q ~Q
T
; where ~Q is a submatrix

of Q for loci that are missing in Sh. The computation of

M ¼ M0 � ~Q ~Q
T

is typically fast, because M0 is pre-computed

and the missing data rate is usually low in each study sample

such that ~Q is much smaller than Q. We then augment M to an

(N þ 1)3 (N þ 1) matrixM0 with the additional row (and column)

equal to S
0
hQ

T . We apply EVD onM0 to obtain a new set of coordi-

nates in a K0-dimensional space (K0 R K), recorded as anN3 K0 ma-

trix X for N reference individuals and a 1 3 K0 vector Zh for the

study sample h.

Projection Procrustes Analysis

Projection Procrustes analysis generalizes the standard Procrustes

approach used in LASER 1.0 to analyze coordinate sets of different

dimensions.26 Given two sets of coordinates for the same N refer-

ence individuals, XN3K0 and YN 3 K (K0 R K), projection Procrustes

analysis aims to find a set of transformations f to project X from a

K0-dimensional space to a K-dimensional space and minimize the

sum of squared Euclidean distances between f(X) and Y. Assuming

that both X and Y have been centered to the origin (i.e., by sub-

tracting the column mean), the objective is to find an ortho-

normal projection matrix AK03K and an isotropic scaling factor r

such that krXA�Yk2F is minimized. Here, we use the notation

kXk2F to represent the square of the Frobenius norm of matrix X,

i.e., kXk2F ¼ trðXXT Þ. When K0 ¼ K, this optimization problem cor-

responds to the standard Procrustes analysis27,28 and the solution

is given by A ¼VUT and r ¼ tr(L)/tr(XTX), where U, L, and V are

singular value decomposition (SVD) ofYTX¼ULVT. WhenK0 > K,

this optimization problem does not have a closed form solution

and needs to be solved numerically.26 Let’s denote the submatrix

of the last K0 � K columns of matrix X as ½X�K0 �K. We use the

following iterative algorithm to find a numerical solution (algo-

rithm 5.1 in Gower and Dijksterjuis26):

Step 1. Augment Y to an N 3 K0 matrix ~Y with K0 � K zero

columns.

Step 2. Perform SVD on ~Y
T
X, i.e., ~Y

T
X ¼ ULVT .

Step 3. Calculate ~A ¼ VUT , r¼ tr(L)/tr(XTX), and f ðXÞ ¼ rX ~A.

Note that ~A is a K0 3 K0 rotation matrix.

Step 4. If ðk½f ðXÞ � ~Y �K0 �Kk
2

F=k½f ðXÞ�K0 �Kk2FÞ < t, let A be a K0 3
K submatrix of the first K columns of ~A and exit. Here t is a

small positive number to control the convergence of the

numerical solution.

Step 5. Replace ½ ~Y �K0 �K by ½f ðXÞ�K0 �K and go to Step 2.

This algorithm basically translates the K0-to-K-dimensional Pro-

crustes problem into a series of K0-to-K0-dimensional standard

Procrustes problems (Steps 2 and 3) by augmenting Y with addi-

tional K0 � K columns taken from f(X) in each iteration (Step 5).

We set t ¼ 10�6 in our analyses and the algorithm usually con-

verges quickly after a few iterations when K0 is small. After conver-

gence, the coordinates of sample h in the K-dimensional reference

space are calculated as Z�
h ¼ f ðZhÞ ¼ rZhA.

Choosing the Values of K and K0

The value of K defines the dimension of the reference ancestry

space and is specified by users according to the features of each

ancestry reference panel and their study objectives. For example,
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followingWang et al.,22 we choseK¼ 4 to construct the worldwide

reference ancestry space based on the HGDP genotypes (632,958

autosomal SNPs) becausemajor continent groups can be well sepa-

rated by the top four PCs, despite the fact that higher-order PCs

can further separate different populations within continents. We

used the top two PCs based on the POPRES data without imputa-

tion (318,682 autosomal SNPs) to define the European reference

ancestry space (K ¼ 2), because the top two PCs reflect the

geographic distribution of European populations while higher-

order PCs are difficult to interpret (Figure S2). We used the same

European reference ancestry map when using the imputed

POPRES data as the reference panel. Our choices of K are primarily

for the ease of interpretation in our examples of estimating conti-

nental ancestry and European ancestry.

We evaluated the performance of the programs laser and trace

over different specified values for K0. The value of K0 can also be

automatically determined by our programs as the number of sig-

nificant PCs in each sample-specific PCA (p < 0.1, Tracy-Widom

test15). We chose a less stringent nominal level of 0.1 instead of

the typical choice of 0.05 because including more ancestry infor-

mative PCs can improve our ancestry estimation and our

algorithm is not sensitive to the inclusion of a small number of

non-informative PCs. Note that the number of significant PCs

might vary for different study samples even when using

the same reference panel. In our simulations, we found that using

K0 ¼ 20 performs substantially better than a smaller K0 and that lit-

tle improvement is gainedwhenK0 > 20 (see Results).We therefore

recommend K0 ¼ 20 in real data examples.

Measurements of Estimation Accuracy

When genome-wide SNP data are available, we used the program

trace with K0 ¼ K to derive ancestry estimates based on genome-

wide SNP data. We then compared our ancestry estimates based

on exome chip genotypes or low-coverage sequence reads to those

based on genome-wide SNPs using a Procrustes similarity score

t0.
27 The Procrustes similarity score ranges from 0 to 1 and we

showed that it is a weighted mean of the Pearson correlations be-

tween two sets of coordinates along different PCs (see Appendix).

t0 ¼ 1 means two sets of coordinates are perfectly correlated with

each other in all PCs after Procrustes transformations, and t0 ¼ 0

means two sets of coordinates have no correlation along any of

the PCs. For each sample h, LASER also reports a sample-specific

Procrustes similarity score t between Y and the first K columns of

f(X), which measures how well the sample-specific PCA map can

be matched to the reference ancestry map and which partly re-

flects the estimation accuracy of Z�
h. Different from t0, which is

calculated by comparing two sets of estimated coordinates for

the study samples, t is calculated based on coordinates of the refer-

ence individuals in the reference ancestry space and in a sample-

specific PCA map. A small value of t indicates the ancestry

estimates of the study sample is inaccurate; however, a high value

of t does not guarantee accurate ancestry estimates of the study

sample due to potential factors of overfitting and incomplete

ancestry representation of the reference panel (see Discussion).

Ancestry Estimation using Exome Chip Genotypes
Because the trace program in LASER 2.0 uses only genotypes across

SNPs shared with the reference panels, we designed the following

experiments to test the performance of ourmethod on exome chip

genotyping data. We split the HGDP dataset into a test set of 238

randomly selected individuals and a reference set of the remaining

700 individuals. Similarly, we split the POPRES dataset and the

imputed POPRES dataset into a test set of 385 randomly selected
The Am
individuals and a reference set of the remaining 1,000 individuals.

We extracted genotypes for the test set on SNPs that were included

in the exome chip design list (seeWeb Resources). The exome chip

design list consists of 273,468 SNPs in total, including 12,580 SNPs

shared with the HGDP data, 3,983 SNPs shared with the POPRES

data, and 19,123 SNPs shared with the imputed POPRES data.

We then applied the trace program on the shared SNPs to estimate

ancestry for the test individuals in ancestry spaces defined by the

HGDP reference set and the POPRES reference set.
Ancestry Estimation using Low-Coverage

Sequencing Data
Simulation

We focused on estimating fine-scale European ancestry in this

simulation. We took empirical sequencing depth across loci in

the POPRES data and the imputed POPRES data for 385 randomly

selected samples from the National Heart, Lung, and Blood Insti-

tute (NHLBI) Exome Sequencing Project (ESP).34 To mimic the

off-target coverage in an efficient exome capture experiment, we

set the coverage for on-target loci to 0 and reduced the off-target

coverage to 5% of the original value by drawing new coverage

C
0
ij � BinomialðCij; 0:05Þ for i ¼ 1,2, ., 385 and j ¼ 1,2, . L,

where Cij is the original off-target coverage for locus j of the ith

selected ESP sample. Conditional on the new coverage patterns

and genotypes of 385 individuals in the POPRES test set, we simu-

lated off-target sequencing reads for 385 Europeans with

sequencing error rate e ¼ 0.01 per base. We applied the laser

program on the simulated sequencing data to project these sam-

ples into the ancestry space defined by the POPRES reference set.

Analysis of the AMD Targeted Sequencing Data

Because most of the AMD samples are Europeans,8 we first

excluded non-European outliers and then focused on estimating

fine-scale ancestry for the European samples in the POPRES refer-

ence space. All the analyses were based on off-target sequence

reads. We used the following algorithm to identify non-European

outliers: (1) use the laser program with K ¼ 4 and K0 ¼ 20 to place

AMD samples into the HGDP worldwide ancestry space; (2) calcu-

late the mean and standard deviation of Europeans in each of the

top K PCs using the HGDP Europeans; (3) define an AMD sample

as an outlier if the sample is more than 5 SDs away from the mean

European coordinates in any one of the top K PCs; (4) recalculate

the mean and standard deviation of Europeans in each PC using

coordinates of HGDP Europeans and non-outlier AMD samples;

and (5) repeat steps 3 and 4 until the outlier set does not change.

In total, we excluded 92 non-European ancestry outliers. We then

used the laser software to estimate fine-scale ancestry for the re-

maining samples using either the original POPRES reference panel

with K ¼ K0 ¼ 2 (a setting used in LASER 1.022) or the imputed

POPRES reference panel with K ¼ 2 and K0 ¼ 20 (a setting recom-

mended in LASER 2.0).
Results

Estimation of Worldwide and European Ancestry

using Exome Chip Genotypes

The exome chip was designed to include primarily nonsy-

nonymous SNPs within protein coding regions and there-

fore has a small number of overlapping SNPs with GWAS

arrays. We show that by using 12,580 exome chip SNPs

shared with the HGDP data, we can accurately estimate
erican Journal of Human Genetics 96, 926–937, June 4, 2015 929



worldwide ancestry in a 4-PC ancestry space defined by the

HGDP genotypes (Figure S3). Using either the standard

Procrustes analysis (i.e., K ¼ K0 ¼ 4) or the projection Pro-

crustes analysis (K ¼ 4 and K0 ¼ 20), exome chip-based

PC coordinates for the 238 tested samples are highly

similar to those derived using all 632,958 HGDP geno-

typed SNPs (t0 ¼ 0.9985 when K0 ¼ 4, t0 ¼ 0.9986 when

K0 ¼ 20). We further show that with as few as 2,000 SNPs

randomly selected from the HGDP dataset, we can esti-

mate ancestry coordinates in a worldwide scale highly

similar (t0 > 0.99) to those based on all HGDP genotyped

SNPs (Figure S4A). These results confirm that exome chip

genotypes are sufficient to infer an individual’s continental

ancestry in the ancestry space defined by the HGDP data.

Estimation of European ancestry is more challenging

because more genetic data are required to reveal fine-scale

population structure20,22 and there are only 3,983 exome

chip SNPs overlapping with the POPRES data. We show

that without projection from high-dimensional PCs (K ¼
K0 ¼ 2), ancestry estimates of 385 test samples based on

3,983 exome chip SNPs do not reflect the geographic pat-

terns of population structure and have a low similarity

score to the coordinates derived from genome-wide SNP

data (t0 ¼ 0.5112 when comparing coordinates of the test

samples in Figure 2B to those in Figure 2A). Interestingly,

this estimation accuracy is much lower than the results ob-

tained by repeating the same analysis based on a similar

number of SNPs randomly selected from the POPRES

data (Figure S4B). One possible explanation is that the

top two PCs based on the exome chip SNPs are distorted

to reflect some patterns due to the chip design, and the

population structure patterns might be hidden in higher-

order PCs. When we ran the trace program using standard

Procrustes analysis in 20-dimensional spaces (K ¼ K0 ¼ 20)

and focused our comparison on the top two PCs, the Pro-

crustes similarity score between estimates based on exome

chip SNPs and those based on genome-wide SNPs increases

to t0 ¼ 0.7946, but all study samples shrink toward the

center of the reference map (Figure 2C). This observation

suggests that the top 20 PCs contain rich ancestry informa-

tion, but the sample-specific maps cannot match well to

the ancestry reference map in a 20-dimensional space,

resulting in an overall shrinkage after Procrustes transfor-

mations. When we used projection Procrustes analysis to

project samples from a K0-dimensional space to a two-

dimensional reference ancestry space, we can see that t0
goes up as K0 increases and reaches a plateau at about

0.8135 when K0 ¼ 20 (Figures 2D and 3A). The shrinkage

issue is much alleviated because projection Procrustes anal-

ysis maximizes the similarity between two sets of coordi-

nates in the low-dimensional reference space without

penalizing the dissimilarity in the higher dimensions

(Figure 2D). It is noteworthy that the t0 based on exome

chip SNPs is close to the score based on the same number

of randomly selected SNPs when we use projection Pro-

crustes analysis (Figure S4B), confirming our hypothesis

that population structure patterns are hidden in the
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higher-order PCs. The number of significant PCs (p <

0.1, Tracy-Widom test) in the sample-specific PCA maps

is about 19.5 when averaged across 385 test samples. For

estimating fine-scale European ancestry, we need more

than 20,000 SNPs randomly selected from the POPRES

data to obtain accurate estimates of the top two PCs with

t0 > 0.95 when compared to the estimates based on all

POPRES genotyped SNPs (Figure S4B).

We then explored whether using the imputed POPRES

data can further improve ancestry estimation within

Europe. The number of overlapping SNPs between the

exome chip and the imputed POPRES data is 19,123,

which is about 5 times of the SNPs shared with the original

POPRES data. Surprisingly, using the imputed reference

panel with K ¼ K0 ¼ 2 produces two unexpected clusters

along PC2 in the estimated coordinates, which have a

low similarity score to the coordinates based on genome-

wide SNP data (t0 ¼ 0.5594 when comparing coordinates

of the test samples in Figure 2E to those in Figure 2A). By

applying PCA on the imputed genotypes and examining

the association between individual SNPs and PC2, we

found that the unexpected pattern is driven by a cluster

of 9,178 SNPs (8,936 of which were imputed) around the

centromere of chromosome 11 (Figure S5). Due to this

artifact introduced by imputation, the east-west popula-

tion structure of Europe is mostly captured by PC3

(Figure S5A). When using standard Procrustes analysis in

20-dimensional spaces (K ¼ K0 ¼ 20), we observed a higher

correlation between the top two PCs based on the

exome chip SNPs and those based on the genome-wide

SNPs (t0 ¼ 0.9042). However, similar to the analysis using

the original reference panel without imputation, all study

samples shrink toward the center of the reference ancestry

map (Figure 2F). This undesirable shrinkage pattern is

caused by the imperfect matching of the top 20 PCs in

each sample-specific PCA map and in the reference PCA

map. For example, PCs that reflect the imputation artifacts

in the sample-specific PCA map cannot be matched in the

reference PCA map. In such cases, the standard Procrustes

analysis will scale all PCs toward the center in order to

minimize the sum of squared Euclidean distances between

two 20-PC maps. When we projected samples from a K0-
dimensional space into a two-dimensional reference

ancestry space using the projection Procrustes analysis,

we can substantially improve our ancestry estimates

because imputation artifacts can be rotated into dimen-

sions beyond the reference ancestry space and will not be

penalized in the matching procedure (Figures 2G and

3A). The Procrustes similarity score t0 reaches a plateau at

about 0.9087 when K0 ¼ 20 and increases slightly to

0.9277 when using all significant PCs (p < 0.1, Tracy-

Widom test) in the sample-specific PCA maps. The average

number of significant PCs is about 63.1, much higher than

20, indicating that many PCs in the sample-specific PCA

mapsmight reflect imputation artifacts such as strong link-

age disequilibrium (LD) between imputed SNPs rather than

population structure. Overall, in our exome chip example
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Figure 2. Estimation of European Ancestry using Exome Chip Genotypes
Grey symbols represent 1,000 reference individuals randomly selected from the POPRES data. Colored symbols represent the remaining
385 POPRES individuals who constitute the test set. Population abbreviations and colors follow Novembre et al.29

(A) Estimated ancestry based on all 318,682 SNPs genotyped in the POPRES data with K ¼ K0 ¼ 2.
(B–D) Estimated ancestry based on 3,983 exome chip SNPs shared with the original POPRES data.
(B) K ¼ K0 ¼ 2 and t0 ¼ 0.5112 compared to estimates based on genome-wide SNPs in (A).
(C) K ¼ K0 ¼ 20 and t0 ¼ 0.7946 when comparing top two PCs to estimates in (A).
(D) K ¼ 2, K0 ¼ 20, and t0 ¼ 0.8135 compared to estimates based on genome-wide SNPs in (A).
(E–G) Estimated ancestry based on 19,123 exome chip SNPs shared with the imputed POPRES data.
(E) K ¼ K0 ¼ 2 and t0 ¼ 0.5594 compared to estimates based on genome-wide SNPs in (A).
(F) K ¼ K0 ¼ 20 and t0 ¼ 0.9042 when comparing top two PCs to estimates in (A).
(G) K ¼ 2, K0 ¼ 20, and t0 ¼ 0.9087 compared to estimates based on genome-wide SNPs in (A).
based on the POPRES data, the additional information

gained by genotype imputation can be translated into an

increment of ~0.1 in t0 (Figure 3A).

Our above analysis on estimating the fine-scale Euro-

pean ancestry is based on imputed genotypes at the exome

chip loci rather than actual exome chip genotypes for the

385 test individuals. We performed an additional experi-
The Am
ment using exome chip genotyping data for 152 individ-

uals from 8 HGDP European populations (C.W., G.R.A.,

N.A. Rosenberg, and J.Z. Li, unpublished data) and

imputed exome chip genotypes for the same set of individ-

uals. The imputation was performed on the HGDP

Illumina 650K genotyping data24 following the same pro-

cedure as we imputed the POPRES data. We confirmed
erican Journal of Human Genetics 96, 926–937, June 4, 2015 931



A B Figure 3. Performance of Trace and
Laser Programs in Estimating Fine-Scale
European Ancestry when using Different
Number of PCs for Projection
The reference individuals and test individ-
uals are the same as those used in Figure 2.
K was fixed to 2 for all analyses. The x axis
indicates the value of K0 ¼ 2, 5, 10, 15 .
100. The y axis reports the Procrustes simi-
larity t0 between coordinates estimated
from subsets of markers to estimates based
on genome-wide SNPs in Figure 2A.
(A) Performance of trace program on
exome chip genotypes. Two red points
indicate results when K0 is chosen as the
number of significant PCs (p < 0.1, Tracy-
Widom test); K0 z 19.5 when using
the original POPRES reference panel, and
K0 z 63.1 when using the imputed POPRES
reference panel.

(B) Performance of laser program on simulated sequence reads at depths corresponding to ~5% of the off-target coverage from exome
sequencing experiments. Two red points indicate results when K0 is chosen as the number of significant PCs (p < 0.1, Tracy-Widom
test); K0 z 7.4 when using original POPRES reference panel, and K0 z 74.2 when using the imputed POPRES reference panel.
that our ancestry estimates derived from the imputed

exome chip genotypes are highly similar to those derived

from the actual exome chip genotypes. For example,

when using the imputed POPRES reference panel with

K¼ 2 and K0 ¼ 20, we obtained a Procrustes similarity score

t0 ¼ 0.9899 between coordinates of the 152 HGDP Euro-

peans based on the imputed and the actual exome chip

genotypes.

Estimation of European Ancestry using Simulated

Low-Coverage Sequencing Data

Our simulated sequencing data have mean depth ~0.0683

across loci in the original POPRES data and ~0.0483 across

loci in the imputed POPRES data (Figure S6). This off-target

depth would be achieved even in a very efficient exome

capture experiment where target regions are sequenced at

1003 and only ~5% of sequence reads fall off target. At

this extremely low coverage level, we cannot accurately es-

timate fine-scale European ancestry by using the standard

Procrustes analysis with K ¼ K0 ¼ 2 and the original

POPRES reference panel (t0 ¼ 0.6565 when comparing co-

ordinates of the test samples in Figure S7A to Figure 2A).

When we used standard Procrustes analysis with K ¼
K0 ¼ 20, the Procrustes similarity score of the top two

PCs increases to t0 ¼ 0.7677, but all samples shrink toward

the center (Figure S7B versus Figure 2A). Even with im-

provements from projection Procrustes analysis, our

ancestry estimates do not show a clear geographic pattern

of population structure (t0 ¼ 0.7841 when K ¼ 2 and K0 ¼
20, Figure S7C versus Figure 2A). When using the imputed

POPRES reference panel with standard Procrustes analysis,

our ancestry estimates are either distorted by imputation

artifacts when K ¼ K0 ¼ 2 (Figure S7D) or shrink toward

the center of the reference map when K ¼ K0 ¼ 20

(Figure S7E). In contrast, when using the imputed POPRES

reference panel with high-dimensional projection, our

ancestry estimates become highly similar to those based
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on genome-wide SNP data (for example, t0 ¼ 0.9388

when K ¼ 2 and K0 ¼ 20), revealing a clear geographic dis-

tribution of European populations (Figure S7F). In this

simulated sequencing data example, the combination of

using the imputed POPRES reference panel and projection

Procrustes analysis leads to an increment of ~0.28 in t0
when K0 > 5 (Figure 3B).

Application to AMD Targeted Sequencing Data

The mean off-target coverage of our AMD targeted

sequencing data is about 0.23, a level that is sufficient

for accurate estimation of European ancestry by LASER

1.0. However, there is a huge variation of the off-target

coverage across samples (see Figure S3 in Wang et al.22),

which can lead to inaccurate ancestry estimates for sam-

ples with low off-target coverage. We reanalyzed this data-

set to illustrate how LASER 2.0 can help increase accuracy

of ancestry estimates for samples with low off-target

coverage.

We first placed all AMD samples onto the HGDP world-

wide ancestry map and used an iterative algorithm to

detect ancestry outliers (Material and Methods). In total,

we detected 92 non-European outliers, most of whom are

probably African Americans (Figure S8A). We then focused

on estimating fine-scale ancestry for the remaining 3,066

European samples. When using the original POPRES refer-

ence panel with standard Procrustes analysis (K ¼ K0 ¼ 2, a

setting used in LASER 1.0), many samples have low sam-

ple-specific Procrustes similarity score, including 60 sam-

ples with t < 0.8, indicating low ancestry estimation accu-

racy for these samples (Figure 4A). In comparison, ancestry

estimates using the imputed POPRES data with K ¼ 2 and

K0 ¼ 20 show a less noisy fine-scale structure within Europe

(Figures S8B and S8C). The improvement of ancestry esti-

mates is more evident for samples with smaller amounts

of off-target sequencing data, as suggested by the sample-

specific Procrustes similarity scores (Figure 4B).
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A B Figure 4. Improved Ancestry Estimation
for the AMD Targeted Sequencing Data
(A) Distribution of the sample-specific Pro-
crustes similarity score t, which compares
the coordinates of the reference individuals
in a sample-specific PCAmap (one for each
AMD sample) to the corresponding coordi-
nates in the reference ancestry map, for
3,068 European samples when using the
original POPRES reference panel with K ¼
K0 ¼ 2 and using the imputed POPRES refer-
ence panel with K ¼ 2 and K0 ¼ 20.
(B) Increase of the sample-specific Procrus-
tes similarity score for 3,068 European sam-
ples when comparing results using the
imputed reference panel with K ¼ 2 and
K0 ¼ 20 to the results using the original
POPRES reference panel with K ¼ K0 ¼ 2.
We further confirmed the observation that substantial

improvement can be gained for samples with lower off-

target sequencing depth by using 897 European samples

that have both sequencing and GWAS data. We evenly

split these samples into four bins based on the off-target

sequencing depth across loci in the POPRES data and

compared sequence-based ancestry estimates for samples

in each bin to the estimates based onGWAS data using Pro-

crustes similarity score t0 (Table 1). For samples that have

the lowest off-target coverage (<0.173), the Procrustes

similarity score (t0) between estimated coordinates based

on off-target reads and those based on 47,237 GWAS

SNPs increases from 0.8680 (original POPRES, K ¼ K0 ¼ 2)

to 0.9579 (imputed POPRES, K ¼ 2 and K0 ¼ 20), while

for samples that have the highest off-target coverage

(R0.263), t0 increases from 0.9459 (original POPRES,

K ¼ K0 ¼ 2) to 0.9666 (imputed POPRES, K ¼ 2 and K0 ¼
20). In agreement with the sample-specific Procrustes sim-

ilarity scores, comparisons with estimates based on GWAS

data demonstrate that genotype imputation and projec-

tion Procrustes analysis can substantially improve fine-

scale ancestry estimation for samples that have small

amounts of sequencing data (Table 1).
Discussion

We present a unified framework, which is implemented in

the software package LASER 2.0, to estimate individual

ancestry using either genotypes or sequence reads. By us-

ing a shared reference panel, we can place both genotyped

and sequenced samples into the same ancestry space.

Compared with LASER 1.0,22 our improved approach

uses projection Procrustes analysis to incorporate ancestry

information from higher-order PCs. This new technique

allows us to further improve our ancestry estimates by

imputing the reference panel to increase the number of

loci overlapping with study samples. Through simulated

and empirical data, we showed that LASER 2.0 outperforms

LASER 1.0 in estimating fine-scale ancestry within Europe

using small amounts of data such as genotypes on the
The Am
exome chip or off-target sequence reads from targeted

sequencing experiments. In our AMD example, we showed

that substantial improvement could be achieved for sam-

ples that have extremely low off-target coverage andwhose

fine-scale ancestry cannot be accurately estimated by

LASER 1.0. With more accurate ancestry estimates, we

can control for population stratification at a finer scale in

association studies, by either including our estimates as co-

variates or using our estimates to guide ancestry matching

between case and control subjects.22

Nevertheless, there are two issues regarding the usage of

projection Procrustes analysis and genotype imputation.

First, because projection Procrustes analysis is an optimiza-

tion problem based on two sets of coordinates for N refer-

ence individuals, there is a possibility of overfitting when

K0, the number of PCs used for projection, is close to N

(Figure S9). In our examples based on the POPRES data,

we found that our ancestry estimation accuracy, as quanti-

fied by the Procrustes similarity score t0, usually reached a

plateau at K0 z 20.We therefore used K0 ¼ 20 for estimating

European ancestry when using the POPRES reference

panel. In general, choosing K0 � N is recommended to

avoid the risk of overfitting. Another benefit of avoiding

a very large value of K0 is to reduce the computational

complexity of projection Procrustes analysis, which is

approximately proportional to the square of K0.
A second issue arises from genotype imputation. Geno-

type imputation is an effective approach to increase the ge-

notype density in our ancestry reference panel when

whole-genome sequencing of a large number of reference

samples is expensive. However, genotype imputation is

not perfect and might introduce unexpected artifacts due

to imputation errors or strong linkage disequilibrium be-

tween the imputed SNPs. Tominimize the impacts of these

factors, we applied stringent quality controls on the

imputed SNPs, avoided imputing the study samples, and

used only the original genotyped SNPs to define the refer-

ence ancestry space. In addition, we showed in our exam-

ples that projection Procrustes analysis can help remove

imputation artifacts by rotating the artifact patterns out

of the reference ancestry space. Our results confirm that
erican Journal of Human Genetics 96, 926–937, June 4, 2015 933



Table 1. Comparison of Sequence-Based and SNP-Based Coordinates for AMD Samples

Range of Off-Target
Coverage

Number
of Samples

POPRES Reference
Panel

Mean Off-Target
Coverage

Average Number of
Covered Loci

Procrustes Similarity
to SNP-Based Coordinates

K0 ¼ 2 K0 ¼ 20

0.04–0.17a 225 original 0.14 32,349 0.8680 0.8878

imputed 0.21 583,105 0.7165 0.9579

0.17–0.21a 224 original 0.19 43,723 0.9326 0.9313

imputed 0.29 764,267 0.7111 0.9665

0.21–0.26a 224 original 0.24 52,856 0.9147 0.9248

imputed 0.36 892,775 0.7115 0.9576

0.26–0.71 224 original 0.33 68,994 0.9459 0.9505

imputed 0.48 1,114,473 0.7705 0.9666

Total 897 original 0.22 49,461 0.9171 0.9244

imputed 0.33 838,370 0.7230 0.9628

The 897 AMD samples were evenly split into four bins according to their mean off-target sequencing depth across 318,682 loci in the original POPRES reference
panel. For each bin, we estimated their ancestry coordinates with both original and imputed POPRES reference panels at K0 ¼ 2 and 20, respectively. We set K¼ 2 in
all the analyses. Note that setting K0 ¼ 2 is equivalent to LASER 1.0. We compared each set of sequence-based coordinates to those based on 47,235 genome-wide
SNPs genotyped in both the AMD GWAS data and the original POPRES data (K ¼ K0 ¼ 2).
aRanges are inclusive of the low number but not the high number.
imputing the reference panel improves fine-scale ancestry

estimation within Europe. In principle, the imputation

strategy can be applied to construct imputed reference

panels for other continents; however, we need to be careful

in evaluating the impact of imputation on the ancestry es-

timates, because depending on the reference haplotype set,

imputation accuracy varies across populations and is often

lower for non-European populations.35,36 When whole

genome sequencing data of ancestry reference panels

become available, we expect that the accuracy of our

method can be further improved as the number of SNPs in-

creases and genotype error rate decreases.

Interpretation of individual ancestry estimates derived

from LASER is based on comparison with the coordinates

of the reference individuals in the ancestry space. The

shrinkage patterns observed in some analyses can be

misleading. For example, in Figures 2F and S7E, all study

samples shrink toward the center of the reference map

despite the fact that the coordinates are highly correlated

with estimates based on genome-wide data. One might

mistakenly conclude that these samples were central

Europeans without a priori ancestry information. The

shrinkage issue can further complicate modeling of popu-

lation structure in association studies based on multiple

datasets because the shrinkage magnitude might vary for

samples with different sets of markers included in the

analyses.

Misleading results can also arise when using an inappro-

priate ancestry reference panel that does not capture the

ancestry of the study sample. To illustrate this point, we

performed an experiment to estimate ancestry for world-

wide samples from the HGDP data in a European ancestry

space generated by the POPRES data (Figure S10). We see

that eight HGDP European populations are well separated
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and are placed close to their geographic neighboring pop-

ulations in the POPRES reference panel (Figure S10B). The

HGDP non-Europeans, however, show misleading pat-

terns; for example, the HGDP Oceanians cluster with

the POPRES Italians and that the HGDP East Asians and

Central/South Asians largely overlap with each other and

with the POPRES East Europeans (Figure S10C). These

results highlight the importance of selecting appropriate

reference panels when using LASER. We therefore recom-

mend users to always start with a worldwide reference

panel and gradually focus on regional panels, as we previ-

ously proposed.22

Our strategy of analyzing each study sample indepen-

dently with a set of reference individuals has several advan-

tages over the standard PCA approach,15 which analyzes

all samples together. First, because we examine each sam-

ple independently, our ancestry estimates are robust to

family structure or cryptic relatedness among the study

samples. Second, the computational complexity of our

method scales linearly to the study sample size whereas

PCA scales cubically. As the sample size grows rapidly in

large-scale genetic studies, our method can be more effi-

cient than PCA in computational time and especially in

memory usage (Table S1). In addition, we can easily run

the analyses of different samples in parallel to further

speed up the computation.

Because principal components are linear combinations

of SNP genotypes, a natural way to project study samples

onto a reference PCA map is to use the PC loadings (coef-

ficients of SNPs) to compute coordinates of the study sam-

ples.15,37 This approach, however, is likely to produce

shrinkage patterns (Figure S11A). Theoretical studies

have shown that the shrinkage is due to overfitting

when the number of markers is much larger than the
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number of samples.38 In a recent release of the EIGENSOFT

package (v.5.02),15 a least-squares projection method

lsqproject has been implemented to analyze samples

that have a lot of missing data. This approach has been

used to study the genetic similarity between ancient

DNA samples and modern human genomes.39 We caution

that the lsqproject method does not address the shrinkage

problem such that the results might be misleading without

careful interpretation (Figure S11B). In contrast, results

derived from LASER 2.0 do not show evident shrinkage

patterns because the projection Procrustes analysis can

rescale the coordinates based on the reference individuals.

Using LASER 2.0 with a pre-defined ancestry space, we

can provide comparable ancestry estimates using either ge-

notypes or sequence reads as input. This desirable feature

can facilitate control of population stratification in disease

association studies when genetic data are collected from

different sources.8,22 For example, it is possible to match

the ancestry background of exome chip genotyped sam-

ples with exome sequenced samples and perform associa-

tion tests at loci that have high-quality genotypes in

both datasets. More broadly, our method can be applied

to study population structure among samples assayed by

different techniques or across different loci, including joint

analysis of ancient DNA samples and modern human

genomes.23,25
Appendix A: Procrustes Similarity and Pearson

Correlation

In this section, we explore the relation between the

Procrustes similarity score t (or t0) and the Pearson

correlation r. Given two N 3 K matrices X and Y, we recall

that Procrustes analysis aims to find a set of optimal

transformations f on X such that ~X ¼ f ðXÞ and Y have

the minimal sum of squared Euclidean distances.27,28 In

the standard Procrustes analysis, ~X ¼ f ðXÞ ¼ rXAþ B,

where r is a scaling factor, A is a K 3 K orthogonal

matrix representing rotation and reflection, and B is a

N 3 K translation matrix with each row equal to the

same translation vector. Without loss of generality, we

assume both X and Y have been centered to the origin,

then B ¼ 0 and ~X ¼ f ðXÞ ¼ rXA. The optimal trans-

formation identified by Procrustes analysis can be ex-

pressed as

A ¼ VUT ; (Equation A1)

r ¼ trðLÞ�tr�XTX
�
; (Equation A2)

where U, V, and L are from singular value decomposition

of YTX as YTX ¼ ULVT. Following Wang et al.,27 the Pro-

crustes similarity score can be expressed as

tðX;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�DðX;YÞ

p
¼ trðLÞ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðXTXÞtrðYTYÞ

q
;

(Equation A3)
The Am
where DðX;YÞ ¼ 1� ½trðLÞ�2=½trðXTXÞtrðYTYÞ� is the sum

of squared Euclidean distances between ~X and Y and is

standardized to range from 0 to 1. We also have

trðLÞ ¼ tr
�
UTYTXV

� ¼ tr
�
YTXVUT

� ¼ tr
�
YT ~X

��
r;

(Equation A4)

and

tr
�
XTX

� ¼ tr
h
ðXAÞTðXAÞ

i
¼ tr

�
~X

T ~X
�.

r2: (Equation A5)

Substituting Equations A4 and A5 into Equation A3, we

can get

tðX;YÞ ¼ tr
�
YT ~X

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr
�
~X
T ~X

�
trðYTYÞ

q

¼
PK

k¼1

PN
i¼1Yik

~Xikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�PK
k
0 ¼1

PN
i¼1

~X
2

ik
0
��PK

k
0 ¼1

PN
i¼1Y

2
ik

0

�r :

(Equation A6)

Notice that both ~X and Y are centered to the origin

in the K-dimensional space. We thus have s2~X;k0
¼

ðN� 1Þ�1PN
i¼1

~X
2

ik0 and s2
Y;k0 ¼ ðN� 1Þ�1PN

i¼1Y
2
ik0 , repre-

senting the variance of ~X and Y along the k0th dimen-

sion, respectively, and rk ¼ corðY ,k; ~X,kÞ ¼ ðN� 1Þ�1

PN
i¼1Yik

~Xik=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2~X;k

s2Y;k

q
, representing the Pearson correlation

between ~X and Y along the kth dimension. Equation A6

can then be written as

tðX;YÞ ¼
XK

k¼1
wkrk; (Equation A7)

in which

wk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
~X;kPK

k
0 ¼1s

2
~X;k

0
3

s2
Y;kPK

k
0 ¼1s

2
Y;k

0

vuut : (Equation A8)

Therefore, the Procrustes similarity score t(X, Y) can be

interpreted as a linear combination of the Pearson correla-

tions between the Procrustes transformed coordinates ~X

and the target coordinates Y, with the weight along each

axis given by Equation A8. Although the original defini-

tion of Procrustes similarity statistic is complicated and

difficult to interpret (Equation A3), our derivation shows

that the Procrustes similarity score is in fact a Pearson cor-

relation measurement in high-dimensional space. When
~X and Y are highly similar such that s2~X;k

zs2Y;k for k ¼
1,2.,K, Equation A8 can be further simplified as

wkz
s2
Y;kPK

k
0 ¼1s

2
Y;k

0
; (Equation A9)

which is the proportion of variance captured by the kth

PC among the top K PCs in Y.
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