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Abstract

Motivation: Genome-wide association studies (GWAS), which genotype millions of single nucleo-

tide polymorphisms (SNPs) in thousands of individuals, are widely used to identify the risk SNPs

underlying complex human phenotypes (quantitative traits or diseases). Most conventional statis-

tical methods in GWAS only investigate one phenotype at a time. However, an increasing number

of reports suggest the ubiquity of pleiotropy, i.e. many complex phenotypes sharing common gen-

etic bases. This motivated us to leverage pleiotropy to develop new statistical approaches to joint

analysis of multiple GWAS.

Results: In this study, we propose a latent low-rank (LLR) approach to colocalizing genetic risk vari-

ants using summary statistics. In the presence of pleiotropy, there exist risk loci that affect multiple

phenotypes. To leverage pleiotropy, we introduce a low-rank structure to modulate the probabil-

ities of the latent association statuses between loci and phenotypes. Regarding the computational

efficiency of LLR, a novel expectation-maximization-path (EM-path) algorithm has been developed

to greatly reduce the computational cost and facilitate model selection and inference. We demon-

strate the advantages of LLR over competing approaches through simulation studies and joint ana-

lysis of 18 GWAS datasets.

Availability and implementation: The LLR software is available on https://sites.google.com/site/

liujin810822.

Contact: macyang@ust.hk.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Thousands of genome-wide association studies (GWAS) have been

conducted over the past decade to identify the genetic risk variants

[i.e. single-nucleotide polymorphisms (SNPs)] underlying such com-

plex phenotypes as human height, diabetes and psychiatric disorders

[see GWAS catalog (Welter et al., 2014) http://www.genome.gov/

gwastudies/]. The progress achieved by GWAS suggests that com-

plex phenotypes are often affected by many variants with weak indi-

vidual effects rather than just a few variants with large effects

(Visscher et al., 2012; Yang et al., 2010). In conventional GWAS

data analysis, association mapping is performed on one phenotype

at a time (Stephens and Balding, 2009). Although many methods
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have been proposed to improve the power of association mapping

(Cantor et al., 2010), those improvements are often limited due to

polygenicity (Gamazon et al., 2015).

Recently, there is accumulating evidence to suggest the ubiquity

of pleiotropy, i.e. many complex phenotypes sharing common gen-

etic bases (Cotsapas et al., 2011; Solovieff et al., 2013; Visscher and

Yang, 2016; Wang et al., 2015; Yang et al., 2015). Examples

include the PTPN22 gene associated with multiple auto-immune

disorders, such as rheumatoid arthritis, Crohn’s disease and type I

diabetes (T1D) (Cotsapas et al., 2011), and the ABO gene that is

associated with both coronary artery disease (CAD) and tonsillitis

(Pickrell et al., 2016). The Psychiatric Genomics Consortium (PGC)

investigated the shared genetic etiology of five psychiatric disorders

by analyzing GWAS data on 33 332 cases and 27 888 controls

(Psychiatric Genomics Consortium, 2013), and identified four loci,

including CACNA1C and CACNB2. Further analysis revealed a sig-

nificant genetic correlation among the psychiatric disorders con-

sidered. For example, the degree of genetic correlation between

schizophrenia (SCZ) and bipolar disorder (BPD) was estimated to be

around 0.68 (Cross Disorder Group of the Psychiatric Genomics

Consortium, 2013). Therefore, leveraging pleiotropy in the joint

analysis of multiple GWAS appears to be a promising strategy for

association mapping (Segura et al., 2012) and risk prediction (Li

et al., 2014).

Several studies have reported encouraging results on power im-

provement through the joint analysis of multiple GWAS (Segura

et al., 2012; Zhou and Stephens, 2014). However, these methods

require individual-level genotype data as their input. This require-

ment is likely to be a major obstacle in the joint analysis of mul-

tiple GWAS because individual-level data from multiple GWAS

are often unavailable to research groups. Data sharing agreements

among multiple research groups and privacy protection regulations

require considerable efforts in practice. Instead, the summary stat-

istics (such as z-values and P-values) of many GWAS are publicly

available. To make use of such a rich data resource, serval statis-

tical approaches have been proposed, including GPA (Chung

et al., 2014), fgwas (Pickrell, 2014), PAINTOR (Kichaev et al.,

2014), trans-ethnic PAINTOR (Kichaev and Pasaniuc, 2015),

CAPSSOC (Zhu et al., 2015), CAVIAR (Hormozdiari et al., 2014)

and MGAS (Van der Sluis et al., 2015) but most are limited to the

analysis of one or two GWAS. Effective methods for harnessing

the summary statistics from multiple GWAS to colocalize risk

variants remain lacking.

In this article, we propose a latent low-rank (LLR) approach to

colocalizing genetic risk variants through the analysis of summary

statistics, specifically Z-scores. In the presence of pleiotropy, a locus

can be associated with multiple phenotype. This offers us an oppor-

tunity to improve the power of identifying risk locus by borrowing

information across multiple studies. To do so, we introduce a low-

rank structure to modulate the association probabilities between

loci and phenotypes. Because the association status between the

locus and the phenotype is not directly observable, the proposed

low-rank structure is a latent variable model. Although the standard

expectation-maximization (EM) algorithm is applicable to our

model, it is too computationally expensive to handle genome-wide

summary statistics from multiple GWAS. To address this issue, we

have developed a novel EM-path algorithm that greatly reduces the

computational costs and facilitates parameter tuning. We show

through simulations that LLR consistently outperforms competing

approaches, and also illustrate its benefits in the joint analysis of 18

phenotypes.

2 LLR: model, algorithm and inference

Before introducing LLR in details, we first outline its model struc-

ture, which is illustrated in Figure 1. LLR only requires the Z-scores

of multiple GWAS as its input. For modeling convenience, we as-

sume that the entire genome partition has been partitioned into

nearly independent loci (Berisa and Pickrell, 2016). Given the associ-

ation status of SNPs and loci, the probabilistic model of Z-scores

can be derived, as discussed in Section 2.1. In Section 2.2, we pro-

pose a low-rank structure to modulate the prior probability of a

given association status between loci and phenotypes, where

the correlation induced by pleiotropy is taken into account. We

then introduce a novel EM-path algorithm to render LLR applic-

able to large-scale genomic data analysis. Finally, we discuss how to

use the false discovery rate obtained by LLR to prioritize risk

variants.

2.1 Basic model for a single GWAS
Suppose that we have collected the Z-scores of M SNPs from

K GWAS in matrix Z ¼ Zjk

� �
2 RM�K, where Zjk corresponds to

the Z-score of the jth SNP in the kth GWAS. Note that the Z-scores

are obtained by testing one SNP at a time in a single GWAS analysis.

Suppose that the M SNPs can be partitioned into L nearly

Fig. 1. Model structure of LLR. The LLR input is the Z-scores from K studies, denoted as Z 2 RM�K , where M is the number of SNPs. By partitioning the genome

into L loci, matrix Z is partitioned accordingly. Note that Zlk 2 RMl�1 is the collection of Z-scores corresponding to locus l and phenotype k. The distribution of

Z-scores depends on the association status of the SNPs and loci, denoted as c and g, as given in Section 2.1. A low-rank structure X ¼ UDVT is introduced to in-

corporate pleiotropy, and it modulates the prior probability of g via the logit link, as demonstrated in Section 2.2
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independent loci. For locus l, we have Ml SNPs, where M ¼
PL

l¼1 Ml.

Given the SNPs at locus l for phenotype k, we denote their Z-scores

as Zlk and association status matrix as clk 2 f0;1gMl�1, respectively.

If all of the Ml SNPs are independent, then the probability model for

Zlk is

Pr Zlkjklk; clkð Þ ¼ N klk � clk; Ið Þ; (1)

where klk 2 RMl�1 is the non-central parameter (NCP) and � denotes

the element-wise product. In the presence of the linkage disequilib-

rium (LD), the Z-scores are no longer independent but correlated.

The above model can be modified as follows to adjust the LD effects

(Hormozdiari et al., 2014; Kichaev et al., 2014):

Pr Zlkjclk; klk;Rlð Þ ¼ N Rl klk � clkð Þ;Rlð Þ; (2)

where Rl 2 RMl�Ml is the correlation among the SNPs at locus l,

which can be accurately estimated from 1000 genome reference

panel data (1000 Genomes Project Consortium, 2010). Hence, it

can be treated as known. For NCP klk, we follow the same

strategy as that of PAINTOR (Kichaev et al., 2014) to treat

them as fixed, i.e. the NCP is set to be the observed Z-score if

the absolute value of the Z-score is larger than 5.3, or the sign

of the observed Z-score multiplied by 5.3 otherwise. Because klk

and Rl are treated as fixed, we denote Pr Zlkjclk; klk;Rlð Þ as

Pr Zlkjclkð Þ.
We now specify the joint probabilistic model for Zk ¼

Z1k; . . . ;ZLk½ �T 2 RM and ck ¼ ½c1k; c1k; . . . ; cLk�T 2 f0; 1gM

PrðZk; ckÞ ¼
YL
l¼1

PrðZlk; clk Þ ¼
YL
l¼1

Pr Zlkjclkð ÞPr clkð Þ; (3)

where the equality holds due to the independence assumption

among the loci. For locus l, what remains unknown is the probabil-

ity of the 2Ml configurations in clk. To obtain that probability, we

could in principle use the EM algorithm. However, without any con-

straints, there would be too many parameters to estimate, leading to

expensive computation and inefficient statistical inferences. As a re-

sult, PAINTOR restricts the search for the maximum number of all

possible causal variants to a default value of 2. In practice, Pickrell

(2014) and Pickrell et al. (2016) set the number of causal variants

within a locus to 1.

2.2 Latent low-rank model
Due to the polygenicity of complex phenotypes, the effect sizes of

individual SNPs are very weak. However, the joint effects of mul-

tiple SNPs are still detectable. To leverage the strength of multiple

studies, rather than relying solely on the association signals at the

SNP level, we introduce a locus-level association status matrix

g ¼ glk½ � 2 f0; 1gL�K, where glk ¼ 1 if the lth locus is associated

with the kth phenotype, and glk ¼ 0 otherwise. To avoid the com-

binatorial search of possible configurations in clk when glk ¼ 1, we

follow the same strategy as Pickrell (2014), which is to assume that

there is only one risk SNP at locus l for phenotype k and that all Ml

SNPs have the same prior probability. Therefore, we have the fol-

lowing conditional probability.

Prðclk ¼ 0jglk ¼ 0Þ ¼ 1;

Prðcj;lk ¼ 1; c�j;lk ¼ 0jglk ¼ 1Þ ¼ 1=Ml;
(4)

where clk ¼ 0 means that none of the SNPs at locus l is associated

with phenotype k, and ðcj;lk ¼ 1; c�j;lk ¼ 0Þ indicates that only SNP j

at locus l is associated with phenotype k. To keep our notation

simple, we use clk j ¼ 1ð Þ to denote cj;lk ¼ 1; c�j;lk ¼ 0
� �

. Based on

(3) and (4), we have the following joint probabilistic model.

Pr Z; c; gð Þ

¼ PrðZjcÞPrðcjgÞPrðgÞ

¼
YK
k¼1

YL
l¼1

��
Prðglk ¼ 0ÞPrðZlkjclk ¼ 0Þ

�1�glk
	
Prðglk ¼ 1Þ

YMl

j¼1

�
1

Ml
PrðZlkjclkðj ¼ 1ÞÞ

�Iðclkðj¼1ÞÞ
glk
�
;

(5)

where Pr Zlkjclk ¼ 0ð Þ ¼ N 0;Rlð Þ and Pr Zlkjclk j ¼ 1ð Þð Þ ¼
N Rl klk � clk j ¼ 1ð Þ½ �;Rlð Þ. Integrating out latent variables c and g

(see details of derivation in the Supplementary document), the

incomplete-data likelihood becomes

Pr Zjp1;p2; . . . ; pKð Þ

¼
YK
k¼1

YL
l¼1

�
ð1� pkÞN 0;Rlð Þ

þpk

	XMl

j¼1

1

Ml
N
�
Rl½klk � clkðj ¼ 1Þ�;Rl


�
;

(6)

where pk ¼ Pr glk ¼ 1ð Þ denotes the prior probability that a locus is

associated with phenotype k.

We now consider incorporating pleiotropic information into our

model by modulating prior probability Pr glkð Þ because the columns

of g are correlated in the presence of loci that can affect multiple

phenotypes. Such pleiotropy-induced correlation allows us to im-

pose a low-rank structure on latent status matrix g.

Let us consider the association pattern in g. Ideally, if the pleio-

tropic loci affect the same group of phenotypes, as illustrated in the

left panel of Figure 2, then g is an exact low-rank matrix. However,

such an ideal case is extremely unlikely in practice. As we can see in

the figure, the rank of g increases dramatically with even a small

perturbation, which implies that the hard constraint that g has a

low-rank structure in the presence of pleiotropy leads to the unstable

estimation of g. To overcome this difficulty, we propose a soft con-

straint on latent status matrix g, i.e. we assume that there exists a

low-rank matrix X that can modulate the probability of the latent

status in g through a logit link:

log
Pr glk ¼ 1jX; x0ð Þ
Pr glk ¼ 0jX; x0ð Þ ¼ Xlk þ x0k; (7)

where X ¼ Xlk½ � 2 RL�K is assumed to be a low-rank matrix and x0k

is the intercept for GWAS k. In the absence of pleiotropy, each

Fig. 2. Left panel: illustration of the low-rank structure of g in an ideal case.

Right panel: the association pattern after a small perturbation in the ideal

case. Clearly, the rank of g increases dramatically, which motivates us to im-

pose a low-rank structure on g via the logit link, as shown in Figure 1
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GWAS should be analyzed separately. Our model (7) includes this

as a special case with Pr glk ¼ 1jX;x0ð Þ ¼ 1
1þexp �x0kð Þ ¼ pk by setting

X ¼ 0. In this case, the prior of locus l associated with phenotype

k is constant with respect to locus l and depends only on k.

As the pattern of pleiotropy becomes increasingly complex, the rank

of X is allowed to increase to capture the induced correlation

structure. The prior of locus l associated with phenotype k becomes

plk ¼ 1
1þexp �Xlk�x0kð Þ, which depends on both l and k, indicating that

its prior is locus-specific. As we shall see below, the estimation of

Xlk indeed borrows information from all K GWAS, which is how we

incorporate pleiotropy into our model.

More specifically, we consider the most commonly used norm,

i.e. the nuclear norm of X, to regularize its rank (Candès and Recht,

2009; Yang et al., 2013; Zhou et al., 2015). We denote it as

jjXjj� ¼
Pr

i¼1 ri, where r is the rank of matrix X and ri is its ith sin-

gular value. Let H ¼ fX; x0g be the collection of model parameters.

The regularized incomplete-data log-likelihood of model (6) can

then be written as

‘pðHÞ ¼
XK

k¼1

XL

l¼1

log

�
ð1� plkÞN ð0;RlÞ

þplk

	XMl

j¼1

1

Ml
N
�
Rl½klk � clkðj ¼ 1Þ�;Rl


�
� jjjXjj�;

(8)

where plk ¼ Pr glk ¼ 1jX;x0ð Þ ¼ 1
1þexp �Xlk�x0kð Þ, and j is the regular-

ization parameter. Clearly, when j!1, the maximizer of log-

likelihood (8), bH 1ð Þ, gives X ¼ 0 that makes LLR equivalent with

the separate analysis, i.e. the separate analysis is a special case of

LLR. As j decreases, bH jð Þ produces a low-rank structure of X that

naturally incorporates pleiotropy information. The tuning param-

eter j allows our model to adapt to pleiotropy patterns with differ-

ent degrees of complexity.

2.3 Algorithm
The direct maximization of log-likelihood (8) is not an easy task,

and we can instead consider using the standard EM algorithm to es-

timate model parameters H ¼ fX;x0g. As we shall see, however, the

standard EM algorithm is computationally expensive when regular-

ization parameter j needs to be tuned for model selection. To over-

come this challenge, we have developed a novel EM-path algorithm

that greatly reduces the computational cost and facilitates model

selection.

2.3.1 Standard EM algorithm

Let H tð Þ ¼ fX tð Þ; x
tð Þ

0 g denote the estimated parameters at the tth EM

iteration.

E-step: Consider the complete-data log-likelihood of model (5)

‘c Z; c; g; Hð Þ

¼
XK

k¼1

XL

l¼1

�
ð1� glkÞ

�
log ð1� plkÞ þ log PrðZlkjclk ¼ 0Þ

�
þglk

	
log plk þ

XMl

j¼1

Iðclkðj ¼ 1ÞÞ
�

log
1

Ml

þlog PrðZlkjclkðj ¼ 1ÞÞ
�

:

(9)

We can calculate the Q function as

Q H; H tð Þ
� �

¼ EH tð Þ f‘c Z; c; g; Hð ÞjZg � jjjXjj�;

where the expectation is taken w.r.t. g and c given current estimated

parameter H and data Z. Thus, the Q function can be further writ-

ten as

Q H; H tð Þ
� �

¼
XK

k¼1

XL

l¼1

�
EHðtÞ ½1� glkjZ�½log ð1� plkÞ þ log PrðZlkjclk ¼ 0Þ�

þEHðtÞ ½glkjZ� log plk þ
	XMl

j¼1

EHðtÞ ½glkIðclkðj ¼ 1ÞÞjZ�
�

log
1

Ml

þlog PrðZlkjclkðj ¼ 1ÞÞ
�

� jjjXjj�;

(10)

where

EHðtÞ ½glkjZ�

¼ Prðglk ¼ 1jZ; HðtÞÞ

¼
pðtÞlk

XMl

j¼1

	
1

Ml
PrðZlkjclkðj ¼ 1Þ




pðtÞlk

XMl

j¼1

	
1

Ml
PrðZlkjclkðj ¼ 1Þ



þ ð1� pðtÞjk ÞPrðZlkjclk ¼ 0Þ

;

EH tð Þ 1� g tð Þ
lk jZ

h i
¼ 1� EH tð Þ glkjZ½ �;

and

EH tð Þ glkI clk j ¼ 1ð ÞjZ½ �ð Þ

¼ Pr glk ¼ 1; I clk j ¼ 1ð Þ½ �jZ; H tð Þ
� �

¼ Pr glk ¼ 1jZ; H tð Þ
� �

Pr clk j ¼ 1ð Þjglk ¼ 1;Z; H tð Þ
� �

¼ Pr glk ¼ 1jZ; H tð Þ
� � Pr Zlkjclk j ¼ 1ð Þð Þ 1

MlXMl

j¼1

Pr Zlkjclk j ¼ 1ð Þð Þ 1

Ml

:

¼ Pr glk ¼ 1jZ; H tð Þ
� � Pr Zlkjclk j ¼ 1ð Þð ÞXMl

j¼1

Pr Zlkjclk j ¼ 1ð Þð Þ
:

M-step: We need to consider only the terms involving model param-

eters H ¼ fX; x0g in the Q function. Therefore, the optimization

problem can be written as

max
X;x0

XK

k¼1

XL

l¼1

�
EHðtÞ ½glkjZ�logplkþEHðtÞ ½1�glkjZ�logð1�plkÞ

�
�jjjXjj�;

(11)

where plk is a function of Xlk;x0k, as given by Equation (7). It turns

out that the optimization problem (11) is actually the log-likelihood

of a logistic regression problem with nuclear norm regularization,

and fast algorithms are available for such convex optimization

(Zhou et al., 2015). Therefore, for a given regularization parameter

j, the standard EM algorithm repeats the foregoing E-step and

M-step until convergence to obtain bH jð Þ. However, the computa-

tional cost is very high because the M-step involves solving a
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regularized logistic regression problem, which requires singular

value decomposition (SVD) to be performed numerous times.

Because the EM algorithm often requires hundreds of iterations, we

would need to solve the large-scale logistic regression problem

hundreds of times. Furthermore, to select an optimal value for j, the

entire EM would need to be invoked multiple times, e.g. the j se-

quence fj1;j2;...;j100g would need to be solved.

2.3.2 Efficient EM-path algorithm

We propose the integration of the EM and boosting algorithms

(Friedman et al., 2000; Friedman, 2001) to address the computational

challenges discussed above. Our new algorithm is motivated by inte-

gration of the following facts of EM and boosting algorithms: (i) the

convergence of EM is guaranteed as long as the ascent condition of

the QðHjHðtÞÞ function holds, i.e. QðHðtþ1ÞjHðtÞÞ � QðHðtÞjHðtÞÞ;
(ii) boosting algorithms can be viewed as a type of gradient method

(Friedman, 2001, 2012; Hastie et al., 2007), e.g. the steepest descent

method (Tibshirani, 2015); and (iii) the regularized solution path

(e.g. the L1 norm and nuclear norm) can be closely approximated by

the boosting path whose statistical properties are also guaranteed

(Hastie et al., 2009; Tibshirani, 2015). In other words, the gradient

view of boosting ensures that the ascent condition holds during the

EM iterations, and the boosting updates generate the similar regular-

ized path without tuning regularization parameter j. Therefore, we

only need to run EM once to generate all of the solution paths. We

thus refer to our proposed algorithm as the EM-path algorithm.

In more details, the EM-path algorithm optimizing log-

likelihood (8) is given as follows. We initialize x
0ð Þ

0 using separate

estimates on each phenotype k and X 0ð Þ ¼ 0. The algorithm then

simply repeats the following E-step and M-step for t ¼ 1;2; . . . until

convergence.

E-step: the same as the E-step in the standard EM algorithm

given in Section 2.3.1.

M-step: Let f X; x0ð Þ be part of the logistic log-likelihood func-

tion (without the regularization term) in the Q function:

f X; x0ð Þ ¼
XK

k¼1

XL

l¼1

�
EH tð Þ glkjZ½ � log plk

þEH tð Þ 1� glkjZ½ � log 1� plkð Þ
�
:

We can obtain the partial derivatives w.r.t. X and x0 as

G ¼ @f X;x0ð Þ
@X

¼ Glk½ � 2 RL�K;

g ¼ @f X; x0ð Þ
@x0

¼ gk½ � 2 RK�1;

where

Glk ¼ EH tð Þ glkjZ½ � � plk;

gk ¼
XL

l¼1

EH tð Þ glkjZ½ � � plk;

and then update x0 and X as

x
tþ1ð Þ

0 ¼ x
tð Þ

0 þ � � sign g tð Þ
� �

;X tþ1ð Þ ¼ X tð Þ þ � � uv>; (12)

where u and v are the leading singular vectors of G tð Þ, which can be

efficiently obtained by the power method without SVD, and � is a

fixed small step size (e.g. 0.01). In fact, this update can be

characterized as a steepest ascent w.r.t. the nuclear norm. A more

detailed derivation is provided in the Supplementary document. As

can be seen, the proposed EM-path algorithm needs to run only

once to generate the solution path. In addition, there is no need to

explicitly tune the regularization parameter j, and the update in the

M-step is much cheaper in computational terms than that in the

standard EM algorithm.

2.4 Model selection and inference
2.4.1 Model selection

We search for optimal number of EM steps using V-fold cross-

validation [V¼5 in the numerical study (Hastie et al., 2009)].

Briefly, we randomly partition L�K entries in g into five groups

with roughly equal sizes, X1; . . . ;X5, such that X1 [ . . . [ X5 ¼ X
and X1 \ . . . \ X5 ¼1. We choose four of them as the training set,

and the remaining one as the testing set. We then evaluate

incomplete-data likelihood (6) of each iteration on the testing set.

The optimal number of iterations is chosen to maximize the testing

likelihood averaged in cross-validation. More details on cross-

validation are given in the Supplementary document.

2.4.2 Statistical inference

After the parameters in the LLR model are estimated, SNPs can be

prioritized on the basis of their local false discovery rates (FDRs)

(Efron, 2010), i.e. the lower the local FDR, the higher the priority.

The estimated FDR of the lth locus for phenotype k is given as

cfdr
locus

lk ¼ 1� Prðglk ¼ 1jZ; bHÞ: (13)

Similarly, we can evaluate the local FDR at the SNP level by

cfdr
SNP

jlk ¼ 1� Prðglk ¼ 1; cjlk ¼ 1jZ; bHÞ: (14)

Clearly, these probabilities are naturally provided at the E-step after

the convergence of the EM algorithm.

3 Results

3.1 Simulation
We designed our simulation based on the following thinking: Our

model presented in Section 2 is design for the analysis of the sum-

mary statistics from multiple studies when the individual-level geno-

type data is not available for sharing. In the first scenario, we

directly simulated summary statistics from the generative model to

evaluate the performance of LLR, which we refer to as ‘summary-

statistic-level simulation’. Basically, the first scenario is used to

validate our designed algorithm, model selection and inference.

However, in real data analysis, the summary statistics are often ob-

tained from individual level phenotype data with the corresponding

phenotype. Therefore, in the second scenario, we mimics the real

data analysis by first simulating the genotype data and then comput-

ing the phenotype of each sample using Eq. (16) in the main manu-

script. Next, we compute the summary statistics from the simulated

genotype and phenotype. We refer this simulation setting as ‘individ-

ual-level simulation’. In each of the two scenarios, we varied some

important parameters, such as heritability h2, within-loci correlation

q and the number of loci L, to obtain compare the LLR’s perform-

ance with that of three alternative methods, namely, GPA, GPA-

Joint (which refers to the joint analysis of two GWASs using GPA)

and PAINTOR.
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3.1.1 Simulation settings

In both scenarios, we considered K¼20 studies with loci L¼500 or

L¼2000. We used the autoregressive correlation structure R qð Þ to

simulate the LD effects within a locus and varied q from small to

large (i.e. q ¼ 0.2, 0.5 and 0.8) to evaluate the influence of LD. For

a given locus, the number of SNPs was fixed at 20. The proportion

of non-null loci for each study was fixed at 0.2, meaning that

plk ¼ 0:2 for all loci.

In the first scenario, the summary statistics were generated as fol-

lows. We first randomly generated the hidden status for each SNP

and each locus. More specifically, we generated an L� r matrix R

and an r�K matrix B to form the low-rank matrix X ¼ RB, where

we set r¼2. The entries in R were independently drawn from the

standard normal distribution, and B was designed to partition the K

studies into two groups, i.e.

B ¼
1 . . . 1

�1 . . . �1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
10 columns

1 . . . 1

1 . . . 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
10 columns

0BBB@
1CCCA:

Using such a simulation setting can generate moderate within-group

pleiotropic effects. The intercept term x0 was set to control the pro-

portion of non-null loci to around 20%. Then, latent variable g was

generated by Pr glk ¼ 1ð Þ ¼ exp x0kþXlkð Þ
1þexp x0kþXlkð Þ. Next, we randomly chose a

causal SNP within locus l in the kth trait if glk ¼ 1 and assigned its

effect size as follows.

bjlk ¼
(
Nð0; r2

bÞ; if cljk ¼ 1

0; if cjlk ¼ 0:
(15)

Next, we generated Z-scores according to distribution (2), with

NCP kjlk ¼
bjlk
ffiffiffiffi
nk
p

rek

. Here, we used the same r2
e for all r2

ek
s.

Heritability h2 ¼ r2
b

r2
bþr2

e
was controlled at different values by adjusting

ratio r2
e=r

2
b, e.g. 0.3, 0.4 and 0.5. In this scenario, the effective sample

size nk was set to 5000. To mimic the situation that the true LD struc-

ture R is unknown in practice, we simulated an additional dataset

with sample size nref ¼ 400 from the multivariate normal distribution

with true covariance R qð Þ. We used this dataset as a reference panel

to estimate the LD structure, and then plugged it into our LLR model.

In the second simulation scenario, we gauged LLR’s performance

relative to the three alternative approaches using simulated raw

genotype data. We first generated the minor allele frequencies for all

of the SNPs from a uniform distribution U 0:05; 0:5ð Þ. We then

sampled data matrix W from the multivariate normal distribution

with R qð Þ, and categorized W into genotype data 0, 1, 2 according

to the Hardy-Weinberg principle, denoted as G. After generating the

raw genotype data, we used the same strategy to simulate effect sizes

bjlk and obtained quantitative phenotypes as

yk ¼ Gbk þ �k; (16)

where G 2 0;1; 2n�M; bk ¼ ½bjlk� 2 RM�1, and �k 	 Nð0; r2
ek

IÞ. By

adjusting r2
ek

, we controlled heritability at 0.3, 0.4 and 0.5.

3.1.2 Results

With the simulated datasets, GPA and PAINTOR were used to per-

form analysis of a single GWAS. The performance of these two

approaches served as the baseline, and the difference between them

elucidated the role of accounting for LD effects. We did not use

trans-PAINTOR (Kichaev and Pasaniuc, 2015) to simultaneously

analyze all of the studies because it assumes all causal variants to be

identical across studies. That assumption is reasonable when analyz-

ing the same phenotype across different populations, but is not

appropriate in our setting, i.e. analysis of different phenotypes in the

same population. GPA-Joint was applied to analyze two studies

within the same group. The comparison between GPA and GPA-

Joint provided evidence of the role pleiotropy plays. LLR was

applicable to all 20 studies considered in the simulation. The com-

parison between LLR and GPA-Joint allowed us to evaluate the gain

in power achieved by the joint analysis of more than two studies.

Figure 3 shows performance comparison of all four methods for

SNP prioritization in summary-statistic-level simulation (i.e. the first

scenario) with the number of loci L¼500 (left panel) and L¼2000

(right panel). In terms of risk variant ranking, LLR consistently out-

performed PAINTOR because of its ability to simultaneously inte-

grate information from multiple studies. As correlation q increases,

GPA and GPA-Joint performed worse because GPA assumed inde-

pendence among SNPs. Supplementary Figures S1 and S2 in the

Supplementary document report AUC and FDR of all four methods

for SNP prioritization in summary-statistic-level simulation with the

number of loci L¼500 and L¼2000. It can be seen that LLR still

outperforms the other methods in terms of the AUC measure. Note

that the performances of all the methods degraded with L increasing

from 500 to 2000. This is because non-null proportion of loci

Fig. 3. Performance comparison of LLR, GPA, GPA-Joint and PAINTOR (summary-statistic-level simulation) with the number of loci L¼500 (left panel) and

L¼2000 (right panel). In each panel, the four methods are tested with heritability h2 ¼ 0:3; 0:4, and 0.5, and within-locus correlation q ¼ 0:2; 0:5, and 0.8. The re-

sults in each setting are summarized from 50 replications
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remains fixed in each setting and the average signal strength of a

locus becomes weaker. The results from individual-level simulation

shown in Supplementary Figures S3, S4 and S5 have similar pat-

terns, indicating that LLR’s performance remains stable in both

simulation scenarios with various configurations of correlation

q and heritability h2.

The foregoing analysis demonstrates that LLR can make effect-

ive use of pleiotropic information. Next, we also evaluated its per-

formance in the absence of pleiotropy using the given K studies. We

simulated the summary statistics using the aforementioned proced-

ure with X ¼ 0, leading to independence among the K studies. We

then ran LLR on the simulated data and the results are presented in

Supplementary Figures S6 and S7 in the Supplementary document.

The two figures show that LLR performs essentially the same in the

separate analyses, which is a desirable property. LLR works well in

this setting because it includes separate analysis as a special case. In

the absence of pleiotropy, there is no signal driving LLR from its ori-

gin (i.e. X ¼ 0 and x0 is initialized by the separate analysis) because

the adaptive model selection strategy described in Section 2.4.1 pre-

fers remaining at origin. In the presence of pleiotropy, LLR naturally

generalizes the separate analyses, as guided by the EM-path algo-

rithm. The model selection strategy applied in LLR basically pre-

vents it from overfitting.

Although we assumed ‘one causal SNP per locus’, LLR still could

identify more risk loci than risk SNPs at the same FDR cutoff since

Prðglk ¼ 1jZ; bHÞ ¼Pcjlk2f0;1g Prðglk ¼ 1; cjlkjZ; bHÞ. As identification

of risk SNPs often remains uncertain due to the polygenicity, LLR

effectively takes the uncertainty at the SNP level into account at the

locus level by the marginalization over cjlk, and further improves its

power by using a low-rank structure to borrow information

across loci in multiple studies. To verify this advantage, we also

evaluated LLR’s performance at the locus level. The results are

given in Supplementary Figures S8 and S9 in the Supplementary

document.

It should be noted that both LLR and PAINTOR involve the

NCP threshold parameter, which is a critical parameter for FDR

control. Our experimental results indicated that the NCP threshold

at 3.7 adopted by PAINTOR may lead to an inflated FDR. To make

the FDR of LLR controlled at the nominal level, we increased this

threshold from 3.7 to 5.3 (Supplementary Figs S14). Empirical evi-

dence from extensive simulation studies (Supplementary Figs S1–S9

and S15–S16) suggests that the NCP threshold at 5.3 can offer a sat-

isfactory FDR control at nominal level 0.1. To see the importance of

the NCP threshold on FDR control, we evaluated LLR’s FDR with

the true NCP. The results are reported in Supplementary Figures

S10–S13 in the Supplementary document, in which the results of the

separate analyses are also presented as a reference. We can observe

from these two figures that the FDR is well controlled in LLR when

the true NCP is used. Clearly, these experimental results imply that

the method of handling NCP in both LLR and PAINTOR consti-

tutes their major limitation. The issue thus deserves careful investi-

gation in future work. A possible improvement would be to model

the estimated effect sizes b^
jlk and their standard errors seðb^

jlkÞ ra-

ther than relying on the Z-scores (Stephens, 2017).

Regarding LLR’s computing efficiency, we compared the EM-

path algorithm with the standard EM algorithm. Supplementary

Table S1 in the Supplementary document presents the results of this

comparison under different model settings of L and q. The solution

paths of the two algorithms are depicted in Supplementary Figure

S17 in the Supplementary document. Although their solution paths

are very similar, the EM-path algorithm runs about four time faster

than the standard EM regularized algorithm. This computing

improvement greatly facilitates LLR’s use in real large-scale genomic

data applications.

3.2 Data analysis of 18 GWAS
We analyzed the data of 18 GWAS on multiple sclerosis (MS)

(International Multiple Sclerosis Genetics Consortium, 2013), psy-

chiatric diseases [i.e. bipolar disorder (BPD), major depression dis-

order (MDD), schizophrenia (SCZ) (Cross Disorder Group of the

Psychiatric Genomics Consortium, 2013), attention-deficit/

hyperacitivity disorder (ADHD) (Neale et al., 2010)], neurodegener-

ative disorder [i.e. Alzheimer‘s disease (IGAP) (Lambert et al.,

2013), anorexia nervosa (GCAN) (Boraska et al., 2014)], type 1 dia-

betes (T1D) (Cooper et al., 2008), anthropometric traits [body mass

index (BMI) for men and for women (Randall et al., 2013)], cardio-

vascular disease [coronary artery disease (cardiogram) (Deloukas

et al., 2012)], glycemic traits [fasting glucose level (Manning et al.,

2012)], metabolic traits [docosahexaenoic acid (DHA) (Lemaitre

et al., 2011)], packed cell volume (PCV) (van der Harst et al., 2012),

smoking behavior [cigarettes per day (TAG cpd) (Tobacco and

Genetics Consortium, 2010)] and human subcortical brain struc-

tures [caudate nucleus and putamen (Hibar et al., 2015)]. We col-

lected the publicly available summary statistics from these 18

GWASa from either dbGaP or consortium websites. Details (includ-

ing download links) of the datasets are provided in Supplementary

Table S2 in the Supplementary document. The summary statistics of

some but not all of the GWAS were imputed. We matched the SNPs

in all 18 GWAS datasets, for a total of 284 551 SNPs. We used the

results from LDETECT (Berisa and Pickrell, 2016) to partition the

entire genome into nearly independent 1703 loci, where 379 samples

from European ancestry in the 1000 Genome Project were used as

reference panel to estimate LD struture of those SNPs. Then we per-

formed analysis using LLR on a desktop PC with 2.40 GHz CPU

and 4GB RAM. The running time was around 5 min.

The Manhattan plots of the LLR analysis results are shown in

Supplementary Figure S18 in the Supplementary document. We also

conducted separate analyses on all 18 datasets, with the Manhattan

plots reported in Supplementary Figure S19 of that document. In

comparing the two figures, it can be seen that LLR identified more

risk variants than the separate analyses. As explained in our discus-

sion of the simulation study, LLR is a generalization of separate ana-

lyses by incorporating pleiotropy information, and thus all variants

identified in the former will also be discovered by LLR. Therefore,

we compared LLR with separate analysis to evaluate the gain of

power. Supplementary Tables S3 and S4 in the Supplementary docu-

ment summarize these detailed results on the locus level and SNP

level, respectively.

There are a number of loci that are significantly associated with

several studied phenotypes. For example, three loci are shared by

SCZ, MS, PCV and T1D. All these three loci reside in the major

histocompatibility complex (MHC) region of Chromosome 6, which

harbours many genes whose primary function in regulating immune

responsiveness to infection is to present foreign antigens to cytotoxic

T lymphocytes (CTLs) and T helper cells. The first locus starting

from 25 626 177 and ending at 26 735 343 contains 3 genes in

SLC17 family, 19 histone H1 genes and 6 Butyrophilin (BTN) genes.

A recent study indicates that common polymorphisms within the

SLC17 family are associated with schizophrenia (Shi et al., 2009).

The SLC17 gene family consists of the three vesicular glutamate

transporters and glutamate has been identified as an important risk

factor of disease progression in multiple sclerosis (MS) in many stud-

ies (Frigo et al., 2012; Groom et al., 2003; Stojanovic et al., 2014).
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The second locus starting from 26 895 127 and ending at 27 986 819

contains the gene ZNF184, which is closely related with schizophre-

nia (Shi et al., 2009). The third locus starting from 27 991 166 and

ending at 28 439 211 contains the gene PGBD1, which is linked with

Alzheimer disease in recent studies (Feulner et al., 2010; Guerreiro

et al., 2012). We believe that our proposed method can be an effect-

ive tool for the analysis of pleiotropy.

We took the first two right singular vectors of the estimated low-

rank matrix X and used them as the coordinates of each study to

generate a dendrogram plot of the hierarchical binary cluster tree in

Figure 4. The cluster tree of the 18 datasets in Figure 4 conforms to

many previously reported results. The first cluster involves seven

datasets (TPG-cpd, DHA, ASD, ADHD, Putamen, Caudate and

MDD), all of which are related to brain function. The connection

between the three psychiatric disorders, ASD, ADHD and MDD,

and brain function is straightforward. The other two datasets,

Caudate and Putamen, come from a study investigating how genetic

variants influence human subcortical brain structures, which pri-

marily concern putamen and caudate nucleus volumes (Hibar et al.,

2015). The TPG-cpd dataset is from a study on the relationship be-

tween genetic factors and smoking behavior (Tobacco and Genetics

Consortium, 2010). Many brain research studies have provided evi-

dence on the effects of nicotine and its derivatives on brain function

(Benwell et al., 1988; Gallinat et al., 2006; Janes et al., 2010; Pentel

et al., 2000). The DHA dataset comes from a study on how common

variants influence the plasma phospholipid level of n-3 fatty acids. It

is well known that n-3 fatty acids provide DHA for the growth and

function of nervous tissue. Reduced DHA is associated with impair-

ments in cognitive and behavioral performance, the effects of which

are particularly important during brain development (Innis, 2005,

2007). There is also considerable supporting evidence with regard to

the other clusters. For example, both T1D and MS contribute sub-

stantially to the autoimmune disease burden in young adults, and

the individual and familial co-occurrence of the two diseases is

widely reported (Henderson et al., 2000; Winer et al., 2001).

Finally, with regard to the relationship between BMI and SCZ,

many studies have shown that individuals with SCZ to be more

obese than those without, and certain genetic factors, such as the 5

�HT2A and 5�HT2C receptors, have been reported to induce addi-

tive genetic effects on weight gain in SCZ patients (Allison et al.,

1999; Coodin, 2001; Ujike et al., 2008).

4 Conclusion

Polygenicity renders the identification of risk variants in GWAS a

challenging task. However, there is accumulating evidence to sug-

gest that complex phenotypes can share common genetic bases,

offering a new paradigm for exploring existing GWAS data re-

sources. In this article, we propose LLR as a new statistical ap-

proach to prioritizing risk variants using the pleiotropy across

multiple related studies. Compared with such existing approaches as

PAINTOR and GPA, LLR demonstrates consistently reliable per-

formance. The development of the EM-path algorithm allows LLR

to efficiently handle the analysis of large-scale genomic data. These

merits make LLR an attractive and effective tool for the integrative

analysis of multiple GWAS data.
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