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Abstract

Knowledge of biological relatedness between samples is important for many genetic stud-

ies. In large-scale human genetic association studies, the estimated kinship is used to

remove cryptic relatedness, control for family structure, and estimate trait heritability. How-

ever, estimation of kinship is challenging for sparse sequencing data, such as those from

off-target regions in target sequencing studies, where genotypes are largely uncertain or

missing. Existing methods often assume accurate genotypes at a large number of markers

across the genome. We show that these methods, without accounting for the genotype

uncertainty in sparse sequencing data, can yield a strong downward bias in kinship estima-

tion. We develop a computationally efficient method called SEEKIN to estimate kinship for

both homogeneous samples and heterogeneous samples with population structure and

admixture. Our method models genotype uncertainty and leverages linkage disequilibrium

through imputation. We test SEEKIN on a whole exome sequencing dataset (WES) of Sin-

gapore Chinese and Malays, which involves substantial population structure and admixture.

We show that SEEKIN can accurately estimate kinship coefficient and classify genetic relat-

edness using off-target sequencing data down sampled to ~0.15X depth. In application to

the full WES dataset without down sampling, SEEKIN also outperforms existing methods by

properly analyzing shallow off-target data (~0.75X). Using both simulated and real pheno-

types, we further illustrate how our method improves estimation of trait heritability for WES

studies.

Author summary

Inference of genetic relatedness from molecular markers has broad applications in many

areas, including quantitative genetics, forensics, evolution and ecology. Classic estimators,
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however, are not suitable for low-coverage sequencing data, which have high levels of

genotype uncertainty and missing data. We evaluate existing methods and describe a new

method for kinship estimation using sparse sequencing data. Our method leverages corre-

lations between neighboring markers and models genotype uncertainty in kinship estima-

tors for both homogeneous populations and admixed populations. We show that our

method can accurately estimate kinship coefficient even when the sequencing depth is as

low as ~0.15X, while existing methods have strong downward bias. Our method can be

applied to estimate kinship using sparse off-target data and thus enables control of family

structure and estimation of heritability in target sequencing studies, in which the deeply

sequenced target regions are often too small to infer genetic relatedness. Even for whole

exome sequencing, we show that our method can improve kinship and heritability estima-

tion by including off-target data, compared to conventional analyses solely based on the

target regions.

Introduction

Understanding biological relatedness plays a central role in quantitative genetic studies of heri-

table traits and diseases. For example, complete pedigree information is required for linkage

analysis and family-based association studies. In population-based association studies, infer-

ence of genetic relatedness is a routine practice in quality control because cryptic relatedness is

a major confounding factor that can lead to spurious association signals. The estimated pair-

wise relatedness matrix is often used to model phenotype covariance through mixed models

for both quantitative traits [1–3] and case-control studies [4]. Such mixed model approaches

have been widely used to control for population and family structure in association tests [1–4]

and to estimate heritability for traits of interests [5,6]. Genetic relatedness between samples

can also be leveraged to improve imputation of missing phenotypes and thus boost the statisti-

cal power of multiple-phenotype association studies [7,8]. In addition to quantitative genetics,

inference of genetic relatedness has broad applications in many other areas, including foren-

sics, agriculture, evolution, and ecology [9].

Kinship coefficient, defined as the probability that two homologous alleles drawn from each

of two individuals are identical by descent (IBD), is a classic measurement of relatedness

[10,11]. While kinship coefficients can be derived from pedigree, many estimators based on

the maximum likelihood method or the method of moments have been developed to estimate

kinship coefficients from genotype data, especially in population-based studies in which pedi-

gree information is not available or inaccurate. While likelihood estimators [12–14] are power-

ful to test the hypothesized relationships, moment estimators [15–17] are widely used due to

their computational efficiencies in large datasets. Two popular moment estimators that assume

random mating in a homogeneous sample have been implemented in the KING [18] and

GCTA [5] programs. These homogeneous estimators, however, can produce biased estimation

in the presence of population structure [13,18,19]. Such bias might be corrected by modeling

the drift of allele frequencies in the subpopulation where both individuals come from [13,19].

While KING has a robust estimator (KING-rob) for samples with population structure, it does

not perform well in analyzing admixed samples, in which two related individuals might have

different ancestry background [20,21]. Two moment estimators, REAP [20] and PC-Relate

[21], and a likelihood estimator, RelateAdmix [22], have been proposed for kinship estimation

in admixed samples. These methods account for different ancestry background of admixed

individuals using individual-specific allele frequencies derived from either model-based
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methods for population structure analysis, such as ADMIXTURE [23,24], or principal compo-

nents analysis (PCA) [25].

These existing kinship estimators require accurate genotype data across genome-wide

SNPs, which may not be available in next-generation sequencing studies. The shallow whole-

genome sequencing design is widely used in large population-based studies, in which individ-

ual genotypes might be inaccurate but the statistical power for association tests is optimized as

the sample size increases [26–28]. Additionally, due to sample quality, shallow sequencing data

are typical from studies of wild animals, forensics, and ancient human DNA [29–31]. Target

sequencing is another widely used design in human genetic studies by focusing on candidate

loci of interests or the whole exome [32–37]. More than 60,000 exomes from over 20 studies

have been contributed to the Exome Aggregation Consortium (ExAC) Browser [36]. In target

sequencing studies, accurate genotypes are only available for the deeply-sequenced target

regions, which often do not have enough SNPs to infer either individual ancestry or pairwise

genetic relatedness, posting a limitation to control for major confounding factors of popula-

tion structure and family relatedness. The vast off-target regions are typically covered by ~0.1-

1X sequence reads, which are byproducts of target sequencing due to imperfect capture tech-

nologies. We have developed a method called LASER that can utilize the off-target reads to

accurately infer an individual’s genetic ancestry background [38,39]. Estimation of pairwise

relatedness remains challenging because the analysis requires both individuals to have data

across a common set of SNPs, which are very few because off-target reads are sparse. For

example, if each individual have ~10% of their off-target SNPs covered by some reads, there

will be only ~1% (= 0.12) of SNPs sequenced in both individuals. Furthermore, there is huge

genotype uncertainty at these SNPs due to extremely low sequencing depth. Recently, a likeli-

hood method called lcMLkin has been proposed to estimate kinship from shallow sequencing

data by explicitly modeling the uncertainty [40]. However, lcMLkin assumes Hardy-Weinberg

equilibrium (HWE) and thus cannot be applied to samples with population structure and

admixture.

In this paper, we develop a new method called SEEKIN (SEquence-based Estimation of

KINship) to estimate kinship using sparse sequence reads. The key rationale is that even

though the number of SNPs sequenced in both of a pair of individuals is small, neighboring

SNPs in the genome are often correlated due to linkage disequilibrium (LD). With large

amounts of existing whole genome sequencing (WGS) data, such as the 1000 Genomes Project

[28], we can leverage LD to call genotypes with probabilities across majority of the SNPs in

each individual, including SNPs that are not even sequenced [41]. Such an approach has been

implemented in many phasing and imputation programs, which are widely used in genome-

wide association studies (GWAS) [42–45]. Through imputation, we can substantially increase

the number of SNPs shared by any two individuals, thereby making it possible to estimate pair-

wise relatedness. We model the genotype uncertainty [46] and propose two moment estima-

tors of kinship; one for homogeneous samples and the other for heterogeneous samples with

population structure and admixture. We evaluate our method using whole-exome sequencing

(WES) and array genotyping data for 762 related individuals from the Singapore Living Bio-

bank Project, which include Chinese and Malays with substantial amount of admixture. We

show that our method can accurately estimate kinship coefficient for both homogeneous and

heterogeneous samples even when the sequencing depth is as low as ~0.15X, while existing

methods show strong downward bias. Compared to results based on high-coverage target

regions in WES, which are ~1.5% of the genome, our method also improves kinship estimation

and the subsequent heritability estimation by properly utilizing data from off-target regions.

While SEEKIN is developed for sparse sequencing data, it is also applicable to high-quality

genotyping data, for which our estimators reduce to the PC-Relate estimators [21]. We have
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implemented SEEKIN in an efficient multithreading program, which is publically available at

https://github.com/chaolongwang/SEEKIN/.

Materials and methods

Genotype calling strategies for shallow sequencing data

A typical genotype calling pipeline involves SNP discovery and genotype inference. In this

study, we skipped the SNP discovery step by focusing on biallelic autosomal SNPs that have

MAF>0.05 in the 1000 Genomes Project Phase 3 (1KG3) dataset [28]. Given BAM files of N
individuals, we computed genotype likelihoods across the 1KG3 SNPs using the mpileup
option in samtools, after filtering reads with mapping quality <30 and base quality <20 [47].

Based on genotype likelihoods, we used three different strategies to generate genotype call sets

for downstream analyses. In the first strategy, we used the default settings of bcftools to call

genotypes without using any LD information [48]. We set to missing at genotype entries with

no read support and filtered SNPs with quality score QUAL<30 or MAF<0.05. In the second

strategy, we used BEAGLE (v4.1) to call genotypes by taking genotype likelihoods as the inputs

(using the gl option) [45]. This strategy leverages the LD information shared among N study

individuals to improve calling accuracy. In the third strategy, we included 5,008 haplotypes

from 1KG3 as the external reference for BEAGLE to improve phasing and genotyping accu-

racy. We chose BEAGLE because most other imputation programs take genotypes as the input

without accounting for genotype uncertainty associated with shallow sequencing data. We set

niterations = 0 in BEAGLE to use its v4.0 phasing algorithm because we found that the geno-

type probabilities produced by the new algorithm in BEAGLE v4.1 were not well calibrated for

shallow sequencing data. For the BEAGLE call sets, we filtered SNPs with dosage r2<0.5 or

MAF<0.05.

The SEEKIN method

We propose kinship estimators for shallow sequencing data based on the imputed dosage (i.e.,

expected genotypic value given the posterior genotype probabilities) and the estimated dosage

r2 at each SNP, both of which are obtained from BEAGLE. We first describe the relationship

between imputed dosages and true genotypes, and then derive kinship estimators for homoge-

neous samples and for samples with population structure and admixture.

Relationship between imputed dosages and true genotypes

Suppose N individuals from a population are genotyped at M biallelic SNPs. Let Gim = 0, 1 or 2

denote the copies of the alternative allele at the mth SNP of the ith individual. The expected

value for Gim is E(Gim) = 2pm for all i = 1,2,. . .,N where pm is the population allele frequency at

the mth SNP. For commonly used genotype imputation programs, Hu et al. [46] derived the

expectation of the imputed dosage ~Gim given true genotype Gim and the mean genotype �GRm in

the imputation reference panel as

Eð~GimjGim;
�GRmÞ ¼ ð1 � r2

mÞ
�GRm þ r2

mGim; ð1Þ

where r2
m is the squared correlation between the true genotypes and the imputed dosages at the

mth SNP. Under iterated expectations for Eq (1), the mean of imputed dosage is

2~pm ¼ Eð~Gimj
�GRmÞ ¼ ð1 � r2

mÞ
�GRm þ 2r2

mpm: ð2Þ
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Note that r2
m can be estimated without knowing the true genotypes and is widely used to

measure imputation accuracy [42,43]. We let br2
m denote the estimate of r2

m throughout the rest

of the paper.

Kinship estimators for homogeneous samples

To estimate kinship coefficient ϕij between individuals i and j using genotypes, Yang et al. [5]

proposed the genetic relationship estimator:

2b�ij ¼
1

jSijj

X

m2Sij

2b�ijm ¼
1

jSijj

X

m2Sij

ðGim � 2pmÞðGjm � 2pmÞ

2pmð1 � pmÞ
; ð3Þ

where Sij is the set of SNPs in the sample with genotypic information for both individuals, and

|Sij| is the number of SNPs in this set. Assuming independence across loci, b� ij is a consistent

estimator of ϕij with |Sij|!1 [18]. The precision of b�ij given in Eq (3) can be improved by

averaging over more loci when high quality genotypes are available. For shallow sequencing

data, however, a direct substitution of the imputed values ð~Gim;
~GjmÞ for (Gim,Gjm) in Eq (3)

could lead to bias in kinship estimation when ignoring the genotype uncertainty. Given Eqs

(1) and (2), we propose the following kinship estimator at the mth SNP:

2~� ijm ¼
ð~Gim � 2~pmÞð

~Gjm � 2~pmÞ

2~pmð1 � ~pmÞð
br2
mÞ

2
; i 6¼ j; ð4Þ

where ~pm is defined by the first equity of Eq (2) and can be estimated as 1

2N

XN

i¼1

~Gim. Based on Eq

(2), we further have pm ¼ ~pm � ð
�GRm � 2~pmÞð1 �

br2
mÞ=

br2
m . Because ð�GRm � 2~pmÞð1 �

br2
mÞ=

br2
m is

small when the reference panel has similar allele frequency as the imputed samples or when br2
m

is close to 1, we assume pm ¼ ~pm unless otherwise noted. Therefore, the main difference

between ~� ijm and b� ijm in Eq (3) is a scaling factor of ð br2
mÞ

2
in the denominator, reflecting the

observation that the imputed dosages have smaller variance than the true genotypes [46].

When br2
m goes to 0 for a poorly imputed SNP, the numerator of ~� ijm also goes to 0 because all

individuals are imputed as �GRm based on Eq (1), but the expectation of ~� ijm remains the same.

We show in S1 Text that ~� ijm share the same expectation with b� ijm under the assumption that

the residuals of Eq (1) for two different individuals i and j are independent. When the true

genotypes are observed, we have ð~Gim;
~GjmÞ ¼ ðGim;GjmÞ and br2

m = 1 so that ~�ijm reduces to b�ijm.

We also propose the following estimator of self-kinship coefficient at the mth SNP:

2~�iim ¼
ð~Gim � 2~pmÞ

2

2~pmð1 � ~pmÞ
br2
m

: ð5Þ

We show in the S1 Text that ~� iim has the same expectation as b� iim and is an unbiased esti-

mator for (1+fi)/2, where fi is the inbreeding coefficient of the ith individual.
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In practice, to obtain a genome-wide relationship between individuals i and j, we combine

~�ijm across SNPs using a weighted average:

~� ij ¼

X

m
wm

~� ijm
X

m
wm

: ð6Þ

Specific choices of weights wm generally affect the precision of the estimator but not its

expectation. A typical choice is the inverse-variance weighting scheme, which minimizes the

sampling variability. We show in S1 Text that the variance of ~�ijm is inversely proportional to

ð br2
mÞ

2
when individuals i and j are unrelated. Furthermore, it has been suggested that down-

weighting low-frequency variants can lead to more stable estimation when aggregating infor-

mation across SNPs [21,49]. Therefore, we propose wm ¼ 2~pmð1 � ~pmÞð
br2
mÞ

2
, which intuitively

down weighs SNPs of poor imputation quality or of low MAF. Under this weighting scheme,

our genome-wide kinship estimator for homogenous samples is

2~� ij ¼

X

m
ð~Gim � 2~pmÞð

~Gjm � 2~pmÞ
X

m
2~pmð1 � ~pmÞð

br2
mÞ

2
; i 6¼ j

X

m
ð~Gim � 2~pmÞ

2 br2
m

X

m
2~pmð1 � ~pmÞð

br2
mÞ

2
; i ¼ j

: ð7Þ

8
>>>>>><

>>>>>>:

We denote ~� ij in Eq (7) as the SEEKIN-hom estimator.

Kinship estimators for structured and admixed samples

In the presence of population structure and admixture, the population allele frequency pm is

no longer able to reflect distinct ancestry backgrounds of the individuals. Several existing

methods replace population allele frequency pm with individual-specific allele frequency pim,

which is the expected allele frequency given the ancestry of individual i [20–22]. For example,

the PC-Relate method uses the following estimator:

2b�ij ¼

X

m
ðGim � 2pimÞðGjm � 2pjmÞ

X

m
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pimð1 � pimÞpjmð1 � pjmÞ

q ; ð8Þ

where the individual-specific allele frequencies pim and pjm are estimated using linear predic-

tors of top PCs [21,25]. Other methods, including REAP [20] and RelateAdmix [22], derive

individual-specific allele frequencies from model-based ancestry estimation programs such as

ADMIXTURE [23]. However, neither PCA nor ADMIXTURE can be applied directly to

sparse sequencing data. We propose using LASER [38,39], a method that we previously devel-

oped for both shallow sequencing and genotyping data, to estimate the top PCs of each study

individual in a reference ancestry space. The estimated PCs can be used to predict individual-

specific allele frequencies.

Briefly, we first apply PCA on genotyping data of a set of reference individuals to construct

an ancestry space using the top K PCs, recorded as V = [V1,. . .,VK]. Let Gm be a column vector

of genotypes at the mth SNP for the reference individuals. We obtain the least squares solution

bβm ¼ ð
bbm0; . . . ; bbmKÞ of the linear model E(Gm|V) = [1,V]βm for each SNP. For each

sequenced individual i, we use LASER to estimate the PC coordinates in the reference ancestry

space, denoted as bv i ¼ ðbvi1; . . . ;bviKÞ, in which bvik is the coordinate of the kth PC [39]. Similar
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to PC-Relate [21], we can estimate the allele frequency for individual i at the mth SNP as

bpim ¼
1

2
ðbbm0 þ

XK

k¼1

bbmkbvikÞ. To avoid out of boundary values, we force bpim to be 0.001 or

0.999 when bpim < 0:001 or bpim > 0:999, respectively.

With the estimated individual-specific allele frequencies, we propose the following kinship

estimator at the mth SNP for samples with population structure and admixture:

2~�ijm ¼
ð~Gim � 2~uimÞð

~Gjm � 2~ujmÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bpimð1 � bpimÞbpjmð1 � bpjmÞ

q
ð br2

mÞ
2
; i 6¼ j; ð9Þ

where ~uim ¼ ~pm þ
br2
mðbpim � bpmÞ and bpm ¼

1

N

X

i
bpim.

Analogous to Eq (5), the self-kinship coefficient at the mth SNP can be estimated as:

2~� iim ¼
ð~Gim � 2~u�imÞ

2

2bpimð1 � bpimÞ
br2
m

; ð10Þ

where ~u�im ¼ ~pm þ

ffiffiffiffiffi
br2
m

q

ðbpim � bpmÞ. The terms ~uim and ~u�im can be interpreted as the adjusted

individual-specific allele frequencies that account for the imputation accuracy and the shift of

allele frequency from the sample average ~pm due to individual ancestry background. Intui-

tively, the shift should be proportional to ðbpim � bpmÞ, reflecting the deviation in allele fre-

quency of an individual from the sample mean. The scaling factors of br2
m in ~uim and

ffiffiffiffiffi
br2
m

q

in ~u�im
are chosen such that our proposed estimators in Eqs (9) and (10) have the same expectations

as the PC-Relate estimator in Eq (8) when individual-specific allele frequencies are accurately

estimated (S1 Text).

To combine information across genome-wide SNPs, we use the same weighting scheme as

the case for the homogeneous samples (Eq 7) but replace population allele frequencies with

individual-specific allele frequencies, i.e. wm ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bpimð1 � bpimÞbpjmð1 � bpjmÞ

q
ð br2

mÞ
2
. Therefore,

our proposed kinship estimator for samples with population structure and admixture is

2~� ij ¼

X

m
ð~Gim � 2~uimÞð

~Gjm � 2~ujmÞ
X

m
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bpimð1 � bpimÞbpjmð1 � bpjmÞ

q
ð br2

mÞ
2
; i 6¼ j

X

m
ð~Gim � 2~u�imÞ

2 br2
m

X

m
2bpimð1 � bpimÞð

br2
mÞ

2
; i ¼ j

ð11Þ

8
>>>>>><

>>>>>>:

When all variants are genotyped or well imputed ( br2
m ! 1), we have ~pm � bpm and ~uim �

~u�im � bpim for m = 1,2,. . .,M. Our estimator ~� ij reduces to the PC-Relate estimator b�ij (Eq 8)

except that our individual-specific allele frequencies are estimated based on coordinates

derived from LASER instead of the PCAiR method [25]. We denote ~� ij in Eq (11) as the SEE-

KIN-het estimator.

Software implementation

We implemented our SEEKIN estimators into a multithreaded C++ program. The program

accepts input files in a standard compressed VCF format. The genotype VCF file can be

obtained from BEAGLE, which include genotypes, imputed dosages, and br2
m for all SNPs. For

the SEEKIN-het estimator, SEEKIN requires an additional VCF file that stores the individual-
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specific allele frequencies. Our program includes a data preparation module to generate the

individual-specific allele frequency file and a main module to compute kinship coefficients. To

balance computational speed and memory usage, the main module adopts a “single producer/

consumer” design pattern (S1 Fig). Briefly, a single-threading “producer” job scans the input

files, extracts required information for each SNP, and packs into a data block for every L SNPs.

Concurrently, a “consumer” job takes the data blocks one by one and performs computation.

We simultaneously compute all elements in a kinship matrix of N individuals by adopting

matrix representations of the estimators in Eqs (7) and (11). Our implementation uses the

Armadillo C++ library [50], which provides multithreading and highly efficient matrix com-

putation. The required memory of SEEKIN scales as O(N2L). The block size L can be specified

by users according to the available computational resource, making our software scalable to

large datasets.

Sequencing and genotyping data from the Singapore Living Biobank

Project

The Singapore Living Biobank is a collection of healthy population-based Chinese and Malay

individuals, for the purpose of phenotype recall study of high-impact variant carriers. These

individuals are sampled from two studies: Multi-Ethnic Cohort (MEC), and the Singapore

Health 2012 (SH2012). The MEC is a population-based cohort initiated in 2007 to investigate

the genetic and lifestyle factors that affect the risk of developing chronic diseases such as diabe-

tes and cardiovascular outcomes in the three ethnic groups (Chinese, Malay, and Indian). The

SH2012 study is a population-based cross-sectional survey conducted in Singapore between

2012 and 2013, with over-sampling of Malays and Indians [51]. Participants in MEC and

SH2012 completed a similar set of questionnaire components, health examination, and bio-

chemisty panels. Description of the MEC and SH2012 studies can be found at http://blog.nus.

edu.sg/sphs/. The National University of Singapore Institutional Review Board approved the

Living Biobank Project (Approval No.: NUS 2585). All participants provided written informed

consent.

In total, 1,299 self-reported Chinese and 1,229 self-reported Malays were whole-exome

sequenced on the Illumina HiSeq2000 platform (125bp paired end). The exonic regions were

captured using the Nimblegen SeqCap EZ Exome v3 kits. We aligned sequence reads to the

human reference genome (GRCh37) using BWA-MEM [52], followed by base quality score

recalibration and removal of duplicated reads [53]. The mean depth of raw reads aligned to the

target regions was ~32X. After excluding reads with mapping quality score <30 and base qual-

ity score<20, the mean sequencing depths across target and off-target regions were ~20X and

~0.75X, respectively. We focused on off-target data in our evaluation of low-coverage settings.

In addition, we used samtools [47] to down sample 20% of the off-target data, which was

~0.15X, to mimic a typical off-target coverage in studies that sequence small target regions

rather than the whole exome [33,38].

Among the sequenced individuals, we have array genotyping data for 2,452 individuals

(Illumina OmniExpress-24). After excluding SNPs with call rate<0.95, HWE P<10−5 in either

Chinese or Malay, or minor allele frequency (MAF) <0.01, we retained 595,668 autosomal

SNPs.

Inference of population structure and relatedness in the Singapore Living

Biobank Project

We jointly analyzed the array genotyping data of 2,452 individuals from the Singapore Living

Biobank Project with 268 individuals from the Singapore Genome Variation Project (SGVP)
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[54]. The SGVP includes 96 Chinese, 89 Malays, and 83 Indians, who were genotyped on Affy-

metrix 6.0 and Illumina Human1M arrays, totaling 1,141,519 autosomal SNPs with

MAF>0.05. Based on 435,314 overlapping SNPs, we estimated the genetic ancestry back-

ground of the Living Biobank samples using ADMIXTURE and LASER [23,39], both includ-

ing the SGVP dataset as reference. For the ADMIXTURE analysis, we used the supervised

mode and set the number of clusters K = 3 because Singapore has three major ethnicity groups.

We plotted results from ADMIXTURE using CLUMPAK [55]. The LASER method can ana-

lyze either genotypes or sequence reads to infer an individual’s ancestry in a reference ancestry

space [39]. We used the default settings of the trace program in LASER to place the Living Bio-

bank samples in the ancestry space generated by the first two principal components (PCs) of

the SGVP individuals.

We applied PC-Relate [21] to the array genotyping data to estimate both kinship coeffi-

cients and the probability of zero IBD sharing. Using the criteria in [18], we identified 736

pairs of close relatedness (�3rd degree), involving 263 Chinese and 499 Malay individuals. In

this paper, we focused on these 762 individuals to evaluate different kinship estimators on low-

coverage sequencing data. Because pedigree information was not collected, we used the kin-

ship coefficients estimated by PC-Relate on the array genotyping data as the gold standard for

comparison.

Simulations and estimation of trait heritability

We evaluated the impacts of kinship estimation on downstream analysis of trait heritability

based on 762 related individuals from the Singapore Living Biobank Project. We first simu-

lated quantitative traits using a linear mixed model y * N(0,2F + I), where F is the kinship

matrix estimated by PC-Relate on the GWAS array data and I is the identity matrix. The simu-

lated traits have heritability h2 = 0.5 under this model. We then estimated heritability using dif-

ferent kinship matrices derived from sequencing data within WES target regions or across

both target and off-target regions using either SEEKIN or PC-Relate. For the off-target regions,

we experimented with both the original data (~0.75X) and the down sampled data (~0.15X).

Heritability estimation was performed using the restricted maximum likelihood (REML)

method in the GEMMA software [2].

We also compared heritability estimation for 10 metabolic traits using GWAS array data,

WES target data, or WES target and off-target data. These traits include body-mass index

(BMI), waist-to-hip ratio (WHR), systolic blood pressure (SBP), diastolic blood pressure

(DBP), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL),

triglycerides (TG), fasting blood glucose (FBG) and hemoglobin A1C (HbA1C). We log-trans-

formed TG to reduce the skewness of its distribution. For each trait, we removed outliers that

are more than 5 standard deviations from the mean. We used the REML method in GEMMA

to estimate heritability for each trait, adjusting for age, age2, sex, and the first two ancestry

PCs. The ancestry PCs were derived from LASER using array genotypes and the SGVP refer-

ence panel [39].

Results

Population structure and relatedness in the Singapore Living Biobank

Project

Three major ethnic groups, Chinese, Malay and Indian, contribute to ~97% of the population

in Singapore. Using genotypes across 435,314 SNPs, we compared the ancestry backgrounds

of 2,452 individuals in the Singapore Living Biobank with 268 individuals previously reported
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by the Singapore Genome Variation Project (SGVP) [54]. The SGVP samples were selected on

the basis that all four grandparents belong to the same ethnic group and thus were less likely to

be admixed [54]. Based on the first two PCs derived from the LASER analysis (Fig 1A and

1B), self-reported Chinese from the Living Biobank Project tightly cluster with each other and

with the SGVP Chinese, expect for a few outliers. In contrast, self-reported Malays appear to

be more heterogeneous, with many individuals spreading between different ethnicity groups

in the SGVP, indicating a high level of admixture among self-reported Malays from the Living

Biobank Project. Such observations were confirmed by the ADMIXTURE analysis [23]. Self-

reported Malays had ~25% Chinese ancestry component and ~13% Indian ancestry compo-

nent, and the variation of admixture proportions is large across individuals (Fig 1C). Com-

pared to Malays, self-reported Chinese are more homogeneous with ~3% Indian component

and ~19% Malay component. The moderate level of shared ancestry component between most

Chinese and Malays may reflect recent split between these two populations in addition to

potential admixture events.

Given the presence of population structure and admixture, we used PC-Relate [21] to infer

relatedness between the Living Biobank samples (Fig 2). Results derived from REAP [20] and

RelateAdmix [22] are similar. We classified close relatedness into monozygotic twins (MZ),

Fig 1. Population structure of 2,452 individuals in the Singapore Living Biobank Project. (A) Reference

ancestry space derived from PCA on the genotypes of Chinese (CHS), Malays (MAS) and Indians (INS) from

SGVP. (B) Estimated ancestry in the SGVP reference space based on LASER analysis. Colored symbols represent

study individuals of self-reported Chinese and Malays. Grey symbols represent the SGVP reference individuals. (C)

Estimated admixture proportion based on supervised ADMIXTURE analysis with the SGVP data as the reference.

We specified K = 3 clusters in the ADMIXTURE analysis, which represent Chinese (blue), Malay (green), and Indian

(orange) ancestry components.

https://doi.org/10.1371/journal.pgen.1007021.g001
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parent-offspring (PO), full siblings (FS), 2nd degree and 3rd degree based on the estimated kin-

ship coefficient ϕ and the probability of zero-IBD-sharing π0 with thresholds given in [18].

After excluding two pairs with ambiguous relationship (i.e., ϕ falls in the range of PO/FS relat-

edness but π0 falls in the range of 2nd degree relatedness), we found two MZ, 53 PO, 96 FS, 38

2nd degree and 24 3rd degree pairs of Chinese, and two MZ, 99 PO, 187 FS, 107 2nd degree and

120 3rd degree pairs of Malays. Interestingly, we also identified eight closely related pairs of

one Chinese and one Malay, including two PO, and two 2nd degree and four 3rd degree pairs.

We further checked the admixture proportion of these eight Chinese-Malay related pairs and

found that all of the eight self-reported Chinese have>35% Malay component, much higher

than the average level of ~19% in Chinese. These results provide clear genetic evidence of

recent admixture between Chinese and Malay populations. In total, 263 Chinese and 499

Malays (~31% of the total sample) were identified to have close relatives in the sample. We

used these individuals to form test datasets to evaluate the performance of different kinship

estimators in a homogeneous sample that includes only Chinese (N = 254 after excluding nine

Chinese with>35% Malay admixture component) and a heterogeneous sample of pooled Chi-

nese and Malays (N = 762).

Sequence-based estimation of kinship in homogeneous samples

To evaluate performance of kinship estimators based on off-target sequencing data in typical

target sequencing experiments, we down sampled from the original WES data to generate a

low-coverage sequencing dataset of ~0.15X depth (Materials and Methods). Our evaluation

of homogeneous estimators was based on 254 related Chinese individuals. We compared our

SEEKIN-hom estimator (Eq 7) with existing estimators for homogeneous samples, including

lcMLkin [40], GCTA [5], and KING (specifically the homogeneous estimator, KING-hom)

[18].

First, we used bcftools to call genotypes for these 254 individuals without using LD infor-

mation [48]. Even though 1,541,541 SNPs with MAF�0.05 were identified, the number of

Fig 2. Cryptic relatedness among 2,452 individuals in the Singapore Living Biobank Project. We estimated kinship coefficient ϕ and the proportion of

zero-IBD-sharing π0 for each pair of individuals using PC-Relate. Relatedness types were determined using the inference criteria of ϕ and π0 given by [18].

An ambiguous relationship was inferred if the criteria of ϕ and π0 were not met simultaneously. (A) Results for pairs of Chinese. (B) Results for pairs of

Malays. (C) Results for pairs that consist of a Chinese and a Malay.

https://doi.org/10.1371/journal.pgen.1007021.g002
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overlapping SNPs between any pair of individuals was only ~46,379 due to large amounts of

missing data. Both GCTA and KING performed poorly with strong downward bias in compar-

ison to the gold standard based on array genotyping data (Fig 3A; Table 1). Due to high

computational demands of lcMLkin, we had to trim the full dataset to one SNP in every 20kb

Fig 3. Performance of homogeneous kinship estimators in ~0.15X sequencing data of 254 Chinese. In each panel, we compared

sequence-based estimates (ϕseq, y-axis) with the array-based estimates from PC-Relate (ϕarray, x-axis). Colored circles represent kinship

coefficients between two individuals and different types of relatedness were determined in Fig 2. Grey crosses represent self-kinship

coefficients. We evaluated lcMLkin (A), GCTA (B, E, H), KING (C, F, I), and SEEKIN (D, G) using the bcftools call set (A-C), the BEAGLE call

set (D-F), and the BEAGLE+1KG3 call set (G-I). Note that lcMLkin and KING do not estimate self-kinship coefficients.

https://doi.org/10.1371/journal.pgen.1007021.g003
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genomic region, resulting in 106,247 independent SNPs for the lcMLkin analysis. By modeling

genotype uncertainty, lcMLkin performed better than GCTA and KING, but still systemati-

cally underestimated kinship for PO/FS pairs by ~0.026 and overestimated kinship for unre-

lated pairs by ~0.035.

Next, we used BEAGLE without external reference data to call genotypes [42]. This

approach uses shared LD information among the individuals to both improve genotype accu-

racy and impute missing data. After excluding SNPs with MAF<0.05 or r2<0.5, the remaining

set includes 68,785 SNPs with no missing genotypes. The lcMLkin method cannot be applied

to this call set because lcMLkin requires genotype likelihoods, which are not available in the

LD-based call set generated by BEAGLE. GCTA and KING had improved performance using

this call set but still systematically underestimated kinship coefficients (Fig 3B; Table 1). In

comparison, our SEEKIN estimator largely reduced the bias by accounting for genotype uncer-

tainty intrinsic to low-coverage sequencing data. For example, the mean downward bias of the

estimated kinship coefficients for PO/FS pairs is 0.023 for SEEKIN, much lower than 0.093 for

GCTA and 0.099 for KING. Similar observations hold for other types of relatedness that SEE-

KIN has the lowest bias and RMSE, except for the unrelated pairs in which GCTA is slightly

better than SEEKIN (Table 1). For self-kinship coefficients, estimates derived from SEEKIN

have little bias as we expect, but the RMSE is higher for SEEKIN (0.043) than for GCTA

(0.014). KING does not estimate self-kinship coefficients. It seems counterintuitive that GCTA

substantially underestimated kinship coefficients for MZ pairs but performed well in estimat-

ing self-kinship coefficients, given that the underlying genotypes are identical for MZ pairs.

Our explanation is that at low-coverage setting, the most-likely genotypes in each individual

tend to follow a prior assumption of HWE. This is equivalent to assuming a self-kinship of 0.5,

close to the truth in human populations with little inbreeding. For SEEKIN, self-kinship esti-

mates have much larger variation than pairwise kinship estimates, which might be due to dif-

ferent amounts of data used in the estimation; self-kinship coefficients were estimated based

on data from a single sample, while pairwise kinship coefficients were derived using data from

two samples.

By incorporating external haplotypes as the reference panel in BEAGLE, we can substan-

tially improve the genotype calling quality for low-coverage sequencing data [41]. In our call

set with the 1KG3 reference panel [28], we retained 4,517,106 SNPs with MAF�0.05 and

Table 1. Performance of homogeneous kinship estimators in ~0.15X sequencing data of 254 Chinese.

Call set Method Unrelated

(31,925 pairs)

3rd degree (22 pairs) 2nd degree (36 pairs) PO/FS (146 pairs) Self-kinship (254

individuals)

RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS

Bcftools lcMLkin 0.035 0.035 0.019 0.016* 0.013* -0.004* 0.028* -0.026* — —

GCTA 0.007* -0.006* 0.034 -0.033 0.062 -0.061 0.116 -0.116 0.123 -0.122

KING 0.053 0.053 0.018* -0.016* 0.088 -0.087 0.225 -0.225 — —

BEAGLE SEEKIN 0.007 -0.004 0.012* -0.009* 0.018* -0.016* 0.028* -0.023* 0.043 -0.003*

GCTA 0.005* -0.003* 0.027 -0.026 0.050 -0.049 0.094 -0.093 0.014* 0.011

KING 0.017 -0.014 0.036 -0.036 0.054 -0.054 0.099 -0.099 — —

BEAGLE+1KG3 SEEKIN 0.005 -0.004 0.004* -0.001* 0.006* -0.001* 0.013* 0.008* 0.032 0.002*

GCTA 0.004* -0.003 0.014 -0.014 0.027 -0.027 0.047 -0.046 0.007* -0.009

KING 0.005 -0.002* 0.014 -0.013 0.022 -0.022 0.044 -0.043 — —

RMSE is the root mean squared error and BIAS is defined as the mean difference to the array-based estimates from PC-Relate for each type of

relatedness. Negative values of BIAS suggest underestimation for results based on sparse sequencing data and vice versa.

* Smallest magnitude of RMSE or BIAS in each call set and each type of relatedness.

https://doi.org/10.1371/journal.pgen.1007021.t001
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r2�0.5, ~66 times more SNPs than the BEAGLE call set without reference. Furthermore, the

genotype concordance rate for SNPs overlapping with the array data increased from 0.85 to

0.90. The improved genotype quality led to better performance for all methods (Fig 3C;

Table 1). Nevertheless, GCTA and KING still consistently underestimated kinship coefficients

for closely related pairs, while SEEKIN had the smallest empirical bias (almost 0) and RMSE

values (~3–4 times smaller than GCTA and KING). All three methods performed similarly for

unrelated pairs. The SEEKIN estimation of self-kinship coefficients remained inaccurate

(RMSE = 0.032).

We further evaluated accuracy of relationship classification based on the pairwise kinship

estimates. Manichaikul et al. [18] proposed a set of classification criteria, in which the ranges

of kinship coefficients for PO/FS, 2nd degree, and 3rd degree related pairs are (2−5/2, 2−3/2),

(2−7/2, 2−5/2), and (2−9/2, 2−7/2), respectively. We applied the same set of criteria on our kinship

estimates to classify relationship. We used the relationship types inferred from array-based

kinship estimates as the gold standard (Fig 2), and calculated the sensitivity and precision in

classifying each relationship type using the sequence-based kinship estimates. Due to more

accurate kinship estimates, relationship classification based on SEEKIN outperformed other

methods (S1 Table). For example, using the BEAGLE+1KG3 call set, SEEKIN achieved perfect

sensitivity and precision in classifying PO/FS, 2nd, and 3rd degree relationship with only

~0.15X sequencing data, while both GCTA and KING had<96%,<92%, and<63% sensitivity

to identify PO/FS, 2nd, and 3rd degree relationship, respectively.

We also repeated the evaluation for both kinship estimation and relationship classification

using all the off-target sequencing data at ~0.75X without down sampling. While all methods

had improved performance compared to using ~0.15X data, kinship estimation using GCTA

and KING remained downward biased in all three call sets (S2 Fig; S2 Table). The sensitivity

and precision of relationship classification were highest for the SEEKIN method (S3 Table).

For the BEAGLE call set, GCTA and KING misclassified >40% of the 2nd degree relatedness

as the 3rd degree relatedness due to underestimation of kinship coefficients, while SEEKIN

only misclassified ~2.8% of the 2nd degree relatedness. When applied to the 1KG3-guided

BEAGLE call set, our SEEKIN method produced kinship estimates almost identical to the gold

standard based on array genotyping data (RMSE�0.007 for all relatedness types). Kinship esti-

mation and relationship classification were also much improved for KING and GCTA. It is

worth noting that in this setting, the variation of SEEKIN estimates of self-kinship coefficients

was much reduced (RMSE = 0.018, similar to RMSE = 0.015 for GCTA).

Sequence-based estimation of kinship with population structure and

admixture

To evaluate kinship estimators for heterogeneous samples, we pooled all 762 related individu-

als from the Singapore Living Biobank Project to form test datasets that include Chinese,

Malays and admixed individuals. We evaluated our SEEKIN-het estimator (Eq 11) and existing

estimators PC-Relate [21], REAP [20], and RelateAdmix [22] at sequencing depth of 0.15X

and 0.75X. We used the SGVP dataset [54] as the reference panel in LASER [39] and ADMIX-

TURE [23] analyses to derive individual ancestry and thereby individual-specific allele fre-

quencies for SEEKIN, REAP and RelateAdmix. Therefore, our analyses were restricted to

SNPs overlapping with the SGVP dataset, including PC-Relate which does not require an

external ancestry reference panel. We did not compare with homogeneous estimators because

they have been shown by previous studies to perform poorly on admixed samples [20–22].

Before proceeding to kinship estimation, we evaluated if we could accurately estimate indi-

vidual-specific allele frequencies for sparsely sequenced samples. First, we confirmed that
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LASER can produce accurate estimation of top PCs using sparse sequencing data. For 762 Chi-

nese and Malays, the top two PCs in the SGVP ancestry space estimated from 0.15X sequenc-

ing data are almost identical to those derived from GWAS array data (Procrustes similarity t0

= 0.9976,Fig 4A and 4B) [56]. Next, we compared individual-specific allele frequencies pre-

dicted by top two LASER PCs from either array data or 0.15X sequencing data with those from

Fig 4. Ancestry and individual-specific allele frequency estimation using array data or ~0.15X sequencing data of 762 Chinese and Malays. (A-B)

LASER ancestry estimates based on array genotypes across 435,314 SNPs overlapping with the SGVP reference dataset (A) or ~0.15X sequence reads

scattering genome-wide (B). Colored symbols represent study individuals and grey symbols represent the SGVP reference individuals. The Procrustes

similarity between (A) and (B) is t0 = 0.9976 for 762 study individuals. (C-D) Comparison of individual-specific allele frequencies derived from LASER analysis

of either array data (C) or ~0.15X sequencing data (D) to the gold standard based on ADMIXTURE analysis of array data. The two-way allele frequency

space is evenly into 100×100 grids and the number of data points within each grid is color-coded according to the logarithmic scale in the color bar. The

Pearson correlation is r = 0.9980 across all data points in (C) and is r = 0.9976 across all data points in (D).

https://doi.org/10.1371/journal.pgen.1007021.g004
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Fig 5. Performance of heterogeneous kinship estimators in ~0.15X sequencing data of 762 Chinese and Malays. In each panel, we compared

sequence-based estimates (ϕseq, y-axis) with the array-based estimates from PC-Relate (ϕarray, x-axis). Colored circles represent kinship coefficients

between two individuals and different types of relatedness were determined in Fig 2. Grey crosses represent self-kinship coefficients. We evaluated SEEKIN

(A, E), PC-Relate (B, F), REAP (C, G), and RelateAdmix (D, H) using the BEAGLE call set (A-D), and the BEAGLE+1KG3 call set (E-H). We only included

SNPs overlapping with the SGVP dataset in the analyses, because we used the SGVP dataset as the reference panel to estimate individual-specific allele

frequencies for SEEKIN, REAP and RelateAdmix.

https://doi.org/10.1371/journal.pgen.1007021.g005

Table 2. Performance of heterogeneous kinship estimators in ~0.15X sequencing data of 762 Chinese and Malays.

Call set Method Unrelated (289,205

pairs)

3rd degree (148

pairs)

2nd degree

(147pairs)

PO/FS (437 pairs) Self-kinship (762

individuals)

RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS

BEAGLE SEEKIN 0.007 -0.002 0.010* -0.001* 0.014* -0.007* 0.025* -0.010* 0.058 0.006

PC-Relate 0.005 0.000* 0.022 -0.021 0.044 -0.043 0.084 -0.083 0.035 0.018

REAP 0.004* -0.001 0.024 -0.023 0.048 -0.048 0.091 -0.090 0.033* -0.005*

RelateAdmix 0.004* 0.002 0.023 -0.022 0.046 -0.045 0.088 -0.087 — —

BEAGLE+1KG3 SEEKIN 0.004 -0.002 0.006* 0.004* 0.009* 0.006* 0.021* 0.015* 0.041 0.018

PC-Relate 0.002* 0.000* 0.011 -0.011 0.025 -0.024 0.049 -0.048 0.014* -0.008*

REAP 0.002* -0.001 0.015 -0.015 0.030 -0.029 0.054 -0.053 0.020 -0.014

RelateAdmix 0.002* 0.001 0.013 -0.013 0.026 -0.025 0.048 -0.047 — —

RMSE is the root mean squared error and BIAS is defined as the mean difference to the array-based estimates from PC-Relate for each type of

relatedness. Negative values of BIAS suggest underestimation for results based on sparse sequencing data and vice versa.

* Smallest magnitude of RMSE or BIAS in each call set and each type of relatedness.

https://doi.org/10.1371/journal.pgen.1007021.t002

SEEKIN: SEquence-based Estimation of KINship

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007021 September 29, 2017 16 / 29

https://doi.org/10.1371/journal.pgen.1007021.g005
https://doi.org/10.1371/journal.pgen.1007021.t002
https://doi.org/10.1371/journal.pgen.1007021


ADMIXTURE analysis of array data. Here, we used the individual-specific allele frequencies

derived from ADMXITURE as the gold standard, because ADMIXTURE is a rigorous model-

based approach with superior performance demonstrated by previous studies [20,22,23]. We

showed that using array data, the PC-based individual-specific allele frequencies are highly

consistent with those derived from ADMIXTURE (Pearson correlation r = 0.9980,Fig 4C and

4D). The correlation dropped slightly to 0.9976 when the PCs were derived from 0.15X

sequencing data instead of array data. These results suggests that our approach based on

LASER can accurately estimate individual-specific allele frequencies even when the sequencing

depth is extremely low.

For kinship estimation in heterogeneous samples, we only considered the BEAGLE and

BEAGLE+1KG3 call sets, because we have shown that LD-based call sets performed much bet-

ter than the bcftools call set at low-coverage setting (Figs 3 and S2). Without modeling the

genotype uncertainty, PC-Relate, REAP, and RelateAdmix underestimated kinship coefficients

for related pairs at both 0.15X and 0.75X sequencing depth (Figs 5 and S3; Tables 2 and S4).

In contrast, SEEKIN reduced the RMSE by >50% and the empirical bias by>65% for kinship

estimates between close relatives. In particular, based on the BEAGLE+1KG3 call set at 0.75X,

SEEKIN’s estimates were almost identical to the gold standard based on array data

(RMSE�0.007). SEEKIN performed similarly to existing methods for unrelated pairs. For self-

kinship coefficients, SEEKIN estimates had large RMSE, especially at 0.15X, even though the

empirical bias was small. The estimates of self-kinship coefficients became more accurate on

the BEAGLE+1KG3 call set at 0.75X, where all three methods had similar RMSE (0.018 for

SEEKIN and REAP, and 0.017 for PC-Relate), but SEEKIN has the smallest empirical bias

(0.002 for SEEKIN, -0.014 for PC-Relate, and -0.017 for REAP). For relationship classification,

SEEKIN remained the best among all methods in terms of both sensitivity and precision,

regardless of sequencing depth and relationship types (S5 Table; S6 Table). Remarkably, SEE-

KIN achieved >92% precision and >86% sensitivity in classifying 3rd and 2nd degree related-

ness based on the BEAGLE call set at 0.15X, while PC-Relate, REAP, and RelateAdmix, had

<40% precision and sensitivity. For the BEAGLE+1KG3 call set at 0.15X, SEEKIN had>95%

precision and sensitivity in classifying 3rd and 2nd degree relatedness, while the same metrics

for the other methods were<90%. Overall, the performance of the SEEKIN-het estimator on

heterogeneous samples is similar to that of SEEKIN-hom on homogeneous samples, suggest-

ing that SEEKIN-het effectively accounts for the diverse ancestry background in samples with

population structure and admixture.

Estimation of kinship and trait heritability for WES data

In this section, we evaluated how SEEKIN can improve kinship estimation in WES studies by

incorporating off-target sequencing data, in comparison to the conventional approach that

discards off-target data. We analyzed the original WES data of 762 Chinese and Malays, jointly

called using BEAGLE with the 1KG3 reference panel across both target and off-target regions.

To illustrate the benefits in downstream analyses, we compared heritability estimation based

on different estimated kinship matrices for both simulated polygenic traits and 10 metabolic

traits.

When we focused on target regions, genotypes across 40,824 SNPs overlapping with the

SGVP dataset were included in the analyses. As expected, the performances of SEEKIN and

PC-Relate were highly similar, because genotypes are accurate at SNPs within deeply

sequenced target regions (Fig 6A and 6B; Table 3). For simulated polygenic traits of h2 = 0.5

heritability, the targeted SNPs were able to capture ~86% of heritability using the kinship

matrix from either SEEKIN or PC-Relate (estimated h2 = 0.43 after averaging across 1000
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replicates, Fig 7). When we expanded our analyses to 1,054,229 SNPs across both target and

off-target regions, the RMSE for SEEKIN estimates was reduced by ~50% across different

relatedness types and the empirical bias remained close to 0 (Fig 6C). Using the improved kin-

ship estimates, the estimated heritability was increased to 0.49, capturing ~98% of total herita-

bility. In contrast, PC-Relate underestimated kinship coefficients by ~7% for closely related

pairs after including off-target data (Fig 6D), leading to ~4% overestimation of the heritability.

If we down sampled the off-target data to 0.15X, it became more evident that the heritability

Fig 6. Off-target sequencing data improve kinship estimation in WES of 762 Chinese and Malays. In each panel, we

plotted the difference between sequence-based estimates and array-based estimates (ϕseq–ϕarray, y-axis) versus the array-

based estimates from PC-Relate (ϕarray, x-axis). Colored circles represent kinship coefficients between two individuals and

different types of relatedness were determined in Fig 2. Grey crosses represent self-kinship coefficients. The analyses were

based on the BEAGLE+1KG3 call set at SNPs overlapping with the SGVP dataset. We evaluated SEEKIN (A, C) and

PC-Relate (B, D) using 40,824 SNPs within the WES target regions or 1,054,229 SNPs across both target and off-target

regions.

https://doi.org/10.1371/journal.pgen.1007021.g006
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was overestimated by ~18% because PC-Relate underestimated kinship coefficients when ana-

lyzing inaccurate off-target genotypes (Fig 7). In comparison, the estimated heritability based

on the kinship matrix from SEEKIN dropped from 0.49 to 0.46 (~8% underestimation)

because less information was captured by 0.15X off-target data. We also tested if our noisy esti-

mation of self-kinship coefficients affects heritability analysis. By replacing the diagonal ele-

ments in the estimated kinship matrices with ones or the values estimated from array

genotyping data, our heritability estimates remained almost the same, suggesting the noises in

our estimated self-kinship coefficients do not introduce bias in heritability analysis.

Finally, we estimated heritability for 10 metabolic traits available in the Singapore Living

Biobank dataset, adjusting for covariates of age, age2, sex, and two ancestry PCs (Materials

Table 3. Comparison of kinship estimation with and without off-target data in WES of 762 Chinese and Malays.

Dataset Method Unrelated (289,205

pairs)

3rd degree (148

pairs)

2nd degree

(147pairs)

PO/FS (437 pairs) Self-kinship (762

individuals)

RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS

Target SEEKIN 0.006 -0.001 0.007 -0.001 0.008 -0.003 0.010 -0.004 0.018 -0.005

PC-Relate 0.005 0.000 0.007 -0.001 0.008 -0.004 0.012 -0.008 0.022 -0.017

Target + off-target SEEKIN 0.003 -0.001 0.003 0.001 0.004 0.001 0.007 0.003 0.017 0.002

PC-Relate 0.002 0.000 0.004 -0.004 0.009 -0.009 0.019 -0.019 0.026 -0.021

Evaluation was based on SNPs overlapped with the SGVP dataset in the BEAGLE+1KG3 call set of 762 individuals for both SEEKIN and PC-Relate.

40,824 SNPs within target regions and 1,054,229 SNPs across target and off-target regions were included in the analyses. RMSE is the root mean squared

error and BIAS is defined as the mean difference to the array-based estimates from PC-Relate for each type of relatedness. Negative values of BIAS

suggest underestimation for results based on sparse sequencing data and vice versa.

https://doi.org/10.1371/journal.pgen.1007021.t003

Fig 7. Heritability estimation for simulated traits in 762 Chinese and Malays. We simulated quantitative

traits of heritability h2 = 0.5 using a linear mixed model Y*N(0,2Φ + I), whereΦ is the array-based kinship

matrix from PC-Relate and I is the identity matrix. We used the REML method in GEMMA to estimate

heritability based on kinship matrices derived from WES data with or without off-target data using SEEKIN or

PC-Relate (Fig 6). We also considered a case where the off-target data were down-sampled to ~0.15X but the

target data remained the same. Each box represents heritability estimates of 1,000 replicates.

https://doi.org/10.1371/journal.pgen.1007021.g007
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and Methods). When we used the kinship matrix derived from array genotyping data, our her-

itability estimates were higher than the previously reported values based on unrelated samples

but smaller than the values reported by twin studies (Table 4) [57–59]. Although heritability

estimates are not directly comparable across studies due to differences in the pedigree struc-

ture and population background, the relative values for different traits in the same study are

comparable. For example, we found cholesterol levels (HDL and LDL) to be more heritable

than blood pressure measurements (DBP and SBP), which is consistent with previous studies

[57–59]. For WES data, we used the kinship matrices derived from SEEKIN. As shown in

Table 4, heritability estimates based on SNPs within target regions were consistently smaller

than the values based on genome-wide array genotyping data by a minimum of 4% (for

HbA1C) to a maximum of 29% (for DBP). After including off-target SNPs, WES-based esti-

mates of heritability became much closer to the array-based estimates (from�1% difference

for HbA1C, DBP, and TC to a maximum of 6% difference for FBG). These results, together

with the simulations, suggest that our SEEKIN method is useful for WES studies to improve

kinship estimation and downstream analyses such as estimation of trait heritability, by prop-

erly incorporating sparse data from off-target regions.

Computational efficiency of SEEKIN

The whole SEEKIN analysis pipeline involved several steps starting from BAM files, including

(1) genotype calling using BEAGLE, (2) ancestry estimation using LASER, (3) individual-spe-

cific allele frequency estimation using SEEKIN, and (4) kinship estimation using SEEKIN. For

homogeneous samples, steps (2) and (3) can be skipped. As an example, we recorded the

computational time of each step in the analysis of the BEAGLE+1KG3 call set for 762 individu-

als at ~0.15X. The BEAGLE step cost ~680 CPU days and ~1.7 wall-clock days when we split

each chromosome into small chunks and ran the analysis in massive parallelization with 400

CPUs. We note that although the BEAGLE step is computationally intensive, especially with a

large reference panel, it is a necessary step for all methods in analyzing shallow sequencing

data. The LASER step cost ~34 CPU hours to place 762 individuals onto the ancestry map gen-

erated by the SGVP panel. The LASER step is scalable to large datasets because the

Table 4. Heritability estimation for 10 metabolic traits in 762 related Chinese and Malays.

Trait Sample size OmniExpress array (435,314 SNPs) WES target + off-target (1,054,229 SNPs) WES target only (40,824 SNPs)

BMI 762 0.587 (0.091)* 0.554 (0.090) 0.553 (0.087)

WHR 762 0.355 (0.096) 0.343 (0.092) 0.319 (0.087)

SBP 752 0.172 (0.098) 0.164 (0.098) 0.157 (0.090)

DBP 734 0.262 (0.099) 0.265 (0.097) 0.187 (0.089)

TC 761 0.523 (0.086) 0.517 (0.086) 0.438 (0.083)

LDL 761 0.602 (0.087) 0.593 (0.084) 0.470 (0.086)

HDL 761 0.658 (0.077) 0.632 (0.077) 0.576 (0.079)

TG 628 0.609 (0.101) 0.588 (0.010) 0.534 (0.099)

FBG 628 0.402 (0.105) 0.378 (0.103) 0.338 (0.101)

HbA1C 683 0.572 (0.092) 0.570 (0.090) 0.549 (0.089)

The pairwise relatedness matrix (2Φ) was estimated by PC-Relate for array genotyping data and by SEEKIN for sequencing data, based on common SNPs

overlapped with the SGVP dataset. Trait heritability was estimated using a linear mixed model, adjusting for age, age2, sex, and the first two ancestry PCs.

Abbreviations of traits: BMI, body-mass index; WHR, waist-to-hip ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol;

LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, triglycerides; FBG, fasting blood glucose; HbA1C, hemoglobin A1C.

* Values in the parenthesis indicate standard errors of the heritability estimates.

https://doi.org/10.1371/journal.pgen.1007021.t004
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computational time of LASER scales linearly to the study sample size and the analysis can be

easily parallelized [38,39]. The last two steps using SEEKIN were fast; estimation of individual-

specific allele frequencies across 1,285,277 SGVP SNPs cost only ~18 CPU minutes, and esti-

mation of kinship coefficients based on the SEEKIN-het estimator cost ~116 CPU minutes.

In application to high-quality genotyping data, we do not need to process raw sequencing

data so that the computationally intensive BEAGLE step can be skipped and the LASER step

can run with a much faster algorithm for genotyping data [39]. To test the applicability of SEE-

KIN in large genotyping datasets, we further benchmarked the performance of kinship estima-

tion using SEEKIN and existing methods based on two synthetic datasets of N = 10,000

individuals, generated by sampling with replacement from the Singapore Living Biobank sam-

ple. One dataset consists of M = 100,000 SNPs (100K dataset) and the other consists of

M = 1,000,000 SNPs (1M dataset). For all evaluations, we set the number of CPUs to 10 if the

software program supports multi-threading. As shown in Table 5, SEEKIN is both fast and

memory efficient. The computational time of SEEKIN scales linearly to the number of SNPs

and the memory usage remains constant (2.8 GB for SEEKIN-hom and 3.8 GB for SEEKIN-

het). The higher memory cost for SEEKIN-het is due to the storage of individual-specific allele

frequencies. The likelihood method, RelateAdmix, is computationally intensive and could not

finish within 100 hours even for the smaller 100K dataset. In contrast, the moment methods

are fast. SEEKIN-hom used 13 minutes to analyze the 100K dataset, while GCTA and KING

only spent ~3 minutes. In the heterogeneous setting, SEEKIN-het spent 55 minutes, about 20

times faster than REAP and 45 times faster than PC-Relate. For the 1M dataset, only KING,

SEEKIN-hom and SEEKIN-het managed to complete within 100 hours given 50 GB memory.

Therefore, in addition to its unique capability for analyzing sparse sequencing data, SEEKIN is

also useful for analyzing high-quality genotype data due to its computational efficiency and

scalability to large datasets.

Discussion

In this study, we have developed moment estimators to infer kinship coefficients using sparse

sequencing data for both homogeneous samples and heterogeneous samples with population

Table 5. Computational costs for kinship estimation software programs.

Estimator type Method Version No. of

CPUs

M = 100,000 SNPs M = 1,000,000 SNPs

Wall-clock

time

Peak

memory

Wall-clock

time

Peak

memory

For homogeneous samples SEEKIN-hom v1.0 10 13 mins 2.8 GB 116 mins 2.8 GB

KING v2.09 10 3.0 mins 0.6 GB 30.3 mins 4.8 GB

GCTA v1.25.3 10 3.3 mins 5.8 GB - >50 GB

For heterogeneous samples with population structure

and admixture

SEEKIN-het v1.0 10 55 mins 3.8 GB 662 mins 3.8 GB

REAP v1.2 10 1168 mins 3.5 GB >100 hours -

PC-Relate v2.1.6 1 2550 mins 15.0 GB >100 hours -

RelateAdmix v0.14 1 >100 hours - >100 hours -

Evaluations were based on two synthetic datasets of 10,000 individuals sampled with replacement from the WES data of 762 Chinese and Malays. We set

the number of CPUs to 10 if the software program supports multi-threading feature. For all methods, we only evaluated computational cost for kinship

estimation, excluding data preparation steps such as genotype calling and calculation of individual allele frequencies. For SEEKIN, we processed SNPs in

blocks of size L = 10,000. PC-Relate was implemented in the R package “GENESIS” and the version number is for the “GENESIS” package. Tests were run

on a high-performance computing cluster with Intel Xeon CPUs (2.8 GHz). Jobs were terminated if the memory usage exceeded 50 gigabytes (GB) or the

run time exceeded 100 hours

https://doi.org/10.1371/journal.pgen.1007021.t005
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structure and admixture. We have implemented our method into a computationally efficient

and scalable software program named SEEKIN. Under certain model assumptions, our SEE-

KIN estimators share the same expectations as existing consistent estimators developed for

high-quality genotyping data (GCTA [5] and PC-Relate [21]). Based on extensive evaluation

on empirical datasets, we have demonstrated that SEEKIN can accurately estimate kinship

coefficients using sparse sequencing data at ~0.15X, which corresponds to the typical off-target

depth in target sequencing experiments. Existing methods, without accounting for the geno-

type uncertainty, substantially underestimate kinship coefficients when applied to sparse

sequencing data. Such patterns persist even when the sequencing depth increases to ~0.75X.

For WES studies, SEEKIN can improve kinship estimation by properly incorporating off-tar-

get sequencing data, as compared to the conventional analysis solely based on genotypes from

deeply sequenced exonic regions.

Off-target reads, as byproducts of target sequencing experiments, are sparsely distributed

genome-wide. The total amount of off-target reads, however, is of the same magnitude as the

number of reads aligned to the target regions. Rather than discarding the vast amount of off-

target data, we previously proposed to use off-target data to infer individual ancestry and con-

trol for population structure using our LASER method [38,39]. Now with the SEEKIN method,

we can also control for family relatedness in target sequencing studies without additional gen-

otyping data. Such an advancement is important because population structure and family

relatedness are major confounders in genetic association studies and unexpected cryptic relat-

edness is prevalent in many datasets [60]. Because the kinship matrix is often used to model

phenotype correlation in mixed models, our method also enables a variety of downstream

analyses for target sequencing studies, including estimation of trait heritability and imputation

of missing phenotypes [7,8]. In addition to target sequencing experiments, sparse human

sequencing data can be extracted from metagenomic sequencing data across different human

body sites [61]. We envision that both SEEKIN and LASER can be potentially used to infer the

genetic background of human hosts, which might help explain patterns in microbiome com-

position across different individuals [61].

Our method leverages the LD information shared among study individuals and an external

reference panel, such as the 1KG3 dataset, to analyze low-coverage sequencing data. Similar

ideas of using LD between neighboring genetic markers have recently been proposed for

matching forensic samples, which is a special case of identifying monozygotic twins in the

inference of genetic relatedness, using either low-coverage sequencing data [29] or disjoint

marker sets [62]. When an external reference panel is not available, LD information can be

learnt from study individuals alone, especially when the sample size is large. Such LD-based

imputation approaches not only increase the number of SNPs shared by any pair of individuals

but also improve the overall genotyping accuracy [26,41].

We have shown that SEEKIN performs much better on the BEAGLE+1KG3 call sets than

the BEAGLE call sets without a reference panel. As more human genomes are sequenced, we

expect to achieve better performance in analyzing sparse sequencing data by utilizing larger

and more relevant reference panels. Such improvement has been demonstrated for genotype

imputation, where imputation accuracy increases as the size of the reference panel increases

[63]. Large reference panels, however, are often not available for studies of non-human species,

including many molecular ecology studies of wild animals based on non-invasive DNA sam-

ples, where inference of kinship from shallow sequencing data is of interests [30]. For these

studies, the strategy of phasing without reference will be useful, and the performance of SEE-

KIN is expected to improve as the study sample size and sequencing depth increase.

We account for the genotype uncertainty using the statistical model proposed by Hu et al.
[46]. The model (Eq 1) expresses the expectation of imputed dosage as a weighted sum of the
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true genotype and the mean genotype of the reference panel, with the weight given by the esti-

mated dosage r2. For Eq (1) to hold, we need well calibrated genotype probabilities so that the

imputed dosage and the estimated r2 reflect the genuine genotype uncertainty [46]. We exam-

ined the genotype probabilities output by BEAGLE in our examples by comparing to the array

data (S4 Fig). We found that at ~0.75X depth, the genotype probabilities were well calibrated

for both phasing with and without a reference panel. As the sequencing depth dropped to

~0.15X, the calibration remains good when phasing with the 1KG3 reference panel, but

becomes inaccurate when phasing without reference panel. These results might explain why

SEEKIN slightly underestimates kinship coefficients for the BEAGLE call sets at 0.15X (Figs

3D and 5A). Even though we have modeled genotype uncertainty using dosage r2 in our esti-

mators, we excluded SNPs with low quality (r2<0.5) for two reasons. First, Hu et al. [46] have

shown that Eq (1) might not hold when r2 is close to 0. Second, low-quality SNPs contain less

information and more noise, and thus might reduce the estimation accuracy when the quality

fall below a certain threshold. We tested a lower threshold by including SNPs with r2>0.3, and

found that SEEKIN produced similar results in comparison to using SNPs with r2>0.5, while

the downward bias observed in the other methods became more evident (S5 Fig and S6 Fig).

Another assumption we made in the derivation of SEEKIN estimators is that residuals of

Eq (1) are independent for different individuals (S1 Text). This is a reasonable assumption for

sparse sequencing data because the variation in the residuals of imputed dosage is dominated

by the randomness in the genomic distribution of sequence reads, which are independent for

different sequenced samples. Nevertheless, this assumption does not strictly hold because we

expect correlated residuals for related individuals due to their correlated genotypes. We cannot

make this assumption for imputed array genotyping data because the input genotypes are

highly correlated for closely related individuals. In an extreme example of monozygotic twins,

the input array genotypes are identical and thus the imputed dosages are also identical, even

though imputation might be inaccurate. For this reason, when applied to the imputed GWAS

data, the underestimation for existing methods is largely reduced in comparison to the low-

coverage sequencing setting, while SEEKIN overestimates kinship coefficients. Overall, SEE-

KIN performs well in the low-coverage sequencing datasets we have tested, suggesting that

SEEKIN is robust to moderate violation of the assumptions, including independent residuals

in the Eq (1) and accurate calibration of genotype probabilities.

Finally, our model implicitly assumes that the level of genotype uncertainty is similar among

study individuals, which is reflected by the estimated dosage r2 for each SNP. This assumption

posts a potential limitation on SEEKIN that it is not suitable to estimate kinship coefficients

between two batches of samples with dramatic quality differences. For example, we cannot

apply SEEKIN to identify cryptic relatedness between individuals from a WES dataset with ~1X

off-target reads and individuals from a target sequencing dataset with ~0.2X off-target reads.

For future work, we can generalize our kinship estimators to such scenarios by allowing for two

r2 values, one for each dataset, to model different levels of genotype uncertainty in the datasets.

A more general approach is to directly use genotype probabilities from each individual, instead

of relying on a single estimated r2 statistic, to model genotype uncertainty. With these exten-

sions, we can also identify potential relatedness between sequenced samples and array geno-

typed samples by treating the array genotyping data as accurate (i.e., r2 = 1 or genotype

probability equal to 1). The ability to infer relatedness across different studies will be useful to

help select samples to include in joint association analyses or in further biological experiments.
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S1 Fig. Illustration of the “single producer/consumer” design in the SEEKIN software. A

single-threading “producer” job scans the input files, extracts required information for each

SNP, and packs into a data block for every L SNPs. These data blocks are stored in the buffer,

labeled as the blocking queue. Concurrently, a “consumer” job takes the data blocks one by

one, performs multi-threading computation, and returns results. The results from different

blocks are automatically combined after all blocks are analyzed. The “producer” and the “con-

sumer” are synchronized through the blocking queue; the “producer” will become inactive if

the blocking queue is full, and the “consumer” will become inactive if the blocking queue is

empty. The best performance is achieved when production and consumption are balanced

(i.e., the blocking queue is neither full nor empty).

(TIF)

S2 Fig. Performance of homogeneous kinship estimators in ~0.75X sequencing data of 254

Chinese. In each panel, we compared sequence-based estimates (ϕseq, y-axis) with the array-

based estimates from PC-Relate (ϕarray, x-axis). Colored circles represent kinship coefficients

between two individuals and different types of relatedness were determined in Fig 2. Grey

crosses represent self-kinship coefficients. We evaluated lcMLkin (A), GCTA (B, E, H), KING

(C, F, I), and SEEKIN (D, G) using the bcftools call set (A-C), the BEAGLE call set (D-F), and

the BEAGLE+1KG3 call set (G-I). Note that KING does not estimate self-kinship coefficients.

(TIF)

S3 Fig. Performance of heterogeneous kinship estimators in ~0.75X sequencing data of

762 Chinese and Malays. In each panel, we compared sequence-based estimates (ϕseq, y-axis)

with the array-based estimates from PC-Relate (ϕarray, x-axis). Colored circles represent kin-

ship coefficients between two individuals and different types of relatedness were determined
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in Fig 2. Grey crosses represent self-kinship coefficients. We evaluated SEEKIN (A, E), PC-Re-

late (B, F), REAP (C, G), and RelateAdmix (D, H) using the BEAGLE call set (A-D), and the

BEAGLE+1KG3 call set (E-H). We only included SNPs overlapping with the SGVP dataset in

the analyses, because we used the SGVP dataset as the reference panel to estimate individual-

specific allele frequencies for SEEKIN, REAP and RelateAdmix.

(TIF)

S4 Fig. Calibration of posterior genotype probabilities from BEAGLE for different

sequencing datasets. For each dataset, we binned the genotype probabilities into 100 bins

spaced by 0.01 from 0 to 1 (x-axis). For each bin, we calculated the proportion of correct geno-

types by comparing to the array genotypes (y-axis). The number of genotypes in each bin is

color-coded according to the logarithmic scale in the color bar. When the genotype probabili-

ties are well calibrated, we expect all data points on the diagonal. (A) BEAGLE call set for 254

Chinese at 0.15X. (B) BEAGLE+1KG3 call set for 254 Chinese at 0.15X. (C) BEAGLE call set

for 762 Chinese and Malays at 0.15X. (D) BEAGLE+1KG3 call set for 762 Chinese and Malays

at 0.15X. (E) BEAGLE call set for 254 Chinese at 0.75X. (F) BEAGLE+1KG3 call set for 254

Chinese at 0.75X. (G) BEAGLE call set for 762 Chinese and Malays at 0.75X. (H) BEAGLE

+1KG3 call set for 762 Chinese and Malays at 0.75X.

(TIF)

S5 Fig. Performance of homogeneous kinship estimators in ~0.15X sequencing data of 254

Chinese using SNPs with r2>0.3. In each panel, we compared sequence-based estimates (ϕseq,

y-axis) with the array-based estimates from PC-Relate (ϕarray, x-axis). Colored circles represent

kinship coefficients between two individuals and different types of relatedness were deter-

mined in Fig 2. Grey crosses represent self-kinship coefficients. We evaluated SEEKIN (A, D),

GCTA (B, E), and KING (C, F) using the BEAGLE call set (A-C), and the BEAGLE+1KG3 call

set (D-F). Note that KING does not estimate self-kinship coefficients.

(TIF)

S6 Fig. Performance of heterogeneous kinship estimators in ~0.75X sequencing data of

762 Chinese and Malays using SNPs with r2>0.3. In each panel, we compared sequence-

based estimates (ϕseq, y-axis) with the array-based estimates from PC-Relate (ϕarray, x-axis).

Colored circles represent kinship coefficients between two individuals and different types of

relatedness were determined in Fig 2. Grey crosses represent self-kinship coefficients. We eval-

uated SEEKIN (A, E), PC-Relate (B, F), REAP (C, G), and RelateAdmix (D, H) using the BEA-

GLE call set (A-D), and the BEAGLE+1KG3 call set (E-H). We only included SNPs

overlapping with the SGVP dataset in the analyses, because we used the SGVP dataset as the

reference panel to estimate individual-specific allele frequencies for SEEKIN, REAP and Rela-

teAdmix.

(TIF)
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