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Summary. Genome-wide association studies (GWAS) and next generation sequencing studies (NGSS) are often performed
in family studies to improve power in identifying genetic variants that are associated with clinical phenotypes. Efficient
analysis of genome-wide studies with familial data is challenging due to the difficulty in modeling shared but unmeasured
genetic and/or environmental factors that cause dependencies among family members. Existing genetic association testing
procedures for family studies largely rely on generalized estimating equations (GEE) or linear mixed-effects (LME) models.
These procedures may fail to properly control for type I errors when the imposed model assumptions fail. In this article, we
propose the Sequence Robust Association Test (SRAT), a fully rank-based, flexible approach that tests for association between
a set of genetic variants and an outcome, while accounting for within-family correlation and adjusting for covariates. Comparing
to existing methods, SRAT has the advantages of allowing for unknown correlation structures and weaker assumptions about
the outcome distribution. We provide theoretical justifications for SRAT and show that SRAT includes the well-known
Wilcoxon rank sum test as a special case. Extensive simulation studies suggest that SRAT provides better protection against
type I error rate inflation, and could be much more powerful for settings with skewed outcome distribution than existing
methods. For illustration, we also apply SRAT to the familial data from the Framingham Heart Study and Offspring Study
to examine the association between an inflammatory marker and a few sets of genetic variants.

Key words: Genetic association testing; Marginal model; Non-parametric transformation model; Perturbation resampling;
Robust procedures.

1. Introduction
Genome-wide association studies (GWAS) and next genera-
tion sequencing studies (NGSS) have emerged as popular tools
for identifying genetic variants associated with complex phe-
notypes (McCarthy et al., 2008; Koboldt et al., 2013). Such
studies have successfully identified variants associated with
susceptibility to diseases such as breast cancer (Easton et al.,
2007; Hunter et al., 2007), prostate cancer (Gudmundsson
et al., 2007; Thomas et al., 2008), and type II diabetes
(Scott et al., 2007; Sladek et al., 2007). Standard analysis
of genome-wide studies typically employs individual-marker
based testing procedures (Nyholt, 2004; Lin, 2005; Moskvina
and Schmidt, 2008; Gao et al., 2010). However, when multiple
variants are related to the phenotype simultaneously, a single
marker analysis may have low statistical power and ultimately
may not prove effective (Vo et al., 2007).

To improve statistical power, a wide range of marker-set
based testing procedures have been proposed and widely used
in the statistical genetics community. A good review of these
methods can be found in Lee et al. (2014). For example,
Wu et al. (2010,2011) proposed the Sequence Kernel Asso-
ciation Test (SKAT), based on a variance component score
statistic, for continuous and discrete phenotypes. These vari-
ance component tests improve power by both leveraging the
correlation among the markers and combining signals from
multiple markers. Additionally, SKAT and some related meth-
ods can be used to detect signals from rare variants by

assigning larger weights to variants with lower minor allele
frequency (MAF).

Although traditional genetic studies often collect data from
unrelated individuals, datasets from families have become
increasingly available in recent years(Chen et al., 2016).
Family studies are potentially more powerful for gene dis-
covery than standard population-based studies, since family
members serve as better controls for each other due to
their shared genetic background and environmental expo-
sures. However, genomic association analysis of familial data
is challenging due to complex yet unknown within-family
dependencies among the outcomes. To test for genomic asso-
ciations with familial data, SKAT has recently been extended
to incorporate within family correlation by using generalized
estimating equations (GEE-SKAT) for continuous/binary
outcomes (Wang et al., 2013), linear mixed-effects (LME-
SKAT) models for continuous outcomes (Schifano et al., 2012;
Chen et al., 2013). Recently,Chen et al. (2016) proposed logis-
tic mixed model-based testing for single variants with binary
outcomes. All these methods make strong model assump-
tions regarding the outcome distribution and/or correlation
structure between family members. However, in practice, it
is difficult, if not impossible, to model outcome distributions
or their within-family correlation structure accurately, partic-
ularly in the presence of unobservable shared environmental
and genetic factors. Examples of such unobserved shared fac-
tors include dietary intake patterns, physical activity habits,
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as well as genetic information not captured by the observed
variant such as insertion–deletion polymorphism or untyped
single nucleotide polymorphisms (SNPs). Mis-specification in
the correlation structure or outcome distribution may result
in incorrect type I error rate for both GEE-SKAT and LME-
SKAT. In addition, all these methods are sensitive to outliers
or skewness in the outcome distribution.

To overcome these challenges, we propose a flexible rank
regression-based marker-set association testing procedure,
named Sequence Robust Association Test (SRAT), which
allows for continuous, binary, or ordinal outcomes while
accounting for within family correlation and adjusting for
potential covariates. SRAT is derived under a marginal non-
parametric transformation (NPT) model with robust variance
calculation, which adjusts for correlation without necessi-
tating the specification of error distributions or underlying
correlation structure. Since SRAT is fully rank-based, the p-
value from SRAT is invariant to monotone transformation of
the response variable.

The remainder of this manuscript is organized as follows. In
Section 2, we describe the proposed testing procedure and also
demonstrate that SRAT includes the well-known Wilcoxon
rank sum test as a special case. We present simulation results
in Section 3, comparing our approach to existing methods
under a variety of settings. In Section 4, we apply SRAT to
a familial genetic dataset from the Framingham Heart Study
and Offspring Study to examine the associations between the
C-reactive protein (CRP) level and a list of candidate genes.
We conclude with brief discussions in Section 5.

2. Methods

Our goal is to test for the association between pheno-
type Y and a p-dimensional genomic marker set G =
(G1, G2, . . . , Gp)

� adjusting for some potential covariates X=
(X1, X2, . . . , Xq)

� with familial data, where Y is allowed to
be continuous, binary or ordinal. For the jth subject in
the ith family, we observe Dij = {Yij,Xij = (Xij,1, Xij,2, . . . ,

Xij,q)
�,Gij = (Gij,1, Gij,2, . . . , Gij,p)

�} and assume that data
from n families are available for analysis with complete
data consisting of D = {Dij, j = 1, . . . , mi, i = 1, . . . , n} from
N = ∑n

i=1
mi individuals, where mi is the number of available

subjects in the ith family.

2.1. NPT Model

To provide a unified framework for phenotypes of various
type, we let Y ∗

ij denote the underlying continuous phenotype
such that Yij = Y ∗

ij when Y is continuous; Yij = I(Y ∗
ij ≥ 1) when

Y is binary, and Yij = ∑K

k=1
I(Y ∗

ij ≥ k) for ordinal outcomes
taking values of 1, ..., K. Thus for a binary or ordinal outcome
Y , Yij can be viewed as a thresholded version of the underly-
ing continuous phenotype Y ∗

ij. Such an approach to modeling
binary or ordinal outcomes has been adopted in genetic liter-
ature (McIntosh et al., 2006; Zuk et al., 2012). To relate Gij

and Xij to Yij, we consider a marginal NPT model

H(Y ∗
ij) = α�Xij + β�Gij + εij, j = 1, . . . , mi, i = 1, . . . , n, (1)

where α = (α1, α2, . . . , αq)
� is the unknown vector of covari-

ate effects, β = (β1, β2, . . . , βp)
� is the unknown effect vector

of the genomic markers, the errors {εij} are independent of
{Xij,Gij, j = 1, . . . , mi, i = 1, . . . , n} but potentially correlated
within family with a common unknown marginal distribution
g(·), and H(·) is unspecified but assumed to be smooth and
strictly increasing. Since both g(·) and H(·) are unspecified,
θ = (α�, β�)� is only identifiable up to a scalar. From model
(1), we have

P(Y ∗
ij ≥ y | Dij) = P{H(Y ∗

ij) ≥ H(y) | Dij}
= ḡ{H(y) − α�Xij − β�Gij},

where ḡ = 1 − g. Thus, P(Yij = 1 | Dij) = P(H(Y ∗
ij) ≥ H(1) |

Dij) = ḡ{H(1) − α�Xij − β�Gij} with H(y) only defined at
y = 1 for binary outcomes; and P(Yij ≥ k | Dij) =P(H(Y ∗

ij) ≥
H(k) | Dij) =ḡ{H(k) − α�Xij − β�Gij} with H(y) only defined
at y ∈ {1, . . . , K} for ordinal outcomes. The marginal model
(1) can also be motivated by an NPT mixed-effects model:

H(Y ∗
ij) = α�Xij + β�Gij + aij + Eij, j = 1, . . . , mi, i = 1, . . . , n,

(2)

where {Eij} are independent and identically distributed (iid)
errors with an unknown common distribution Fe(·), and the
random effect aij captures the effect of unobservable genetic
and environmental factors shared by the ith family, and is
assumed independent of Gij,Xij, and Eij with a common but
unknown marginal distribution function FA(.). Then (2) can
be viewed as a special case of (1) with error distribution g(x) =∫

Fe(x + a)dFA(a).
When mi = 1, (1) reduces to the NPT model studied in

Han (1987). For this uncorrelated case, the maximum rank

correlation estimator, θ̂ = arg maxθ∈�L(α, β), was shown to be
consistent and asymptotically normal under mild regularity
conditions (Sherman, 1993), where

L(α, β) = n−2
∑
i,j,i′,j′

I(Yij > Yi′j′)

× I(α�Xij + β�Gij > α�Xi′j′ + β�Gi′j′), (3)

the maximization is constrained within the parameter space
� = {θ : ‖θ‖1 = 1} since θ is only identifiable up to a scalar,
and ‖ · ‖d denotes the Ld norm. Here and throughout,
we let

∑
i,j,i′,j′ = ∑n

i=1

∑mi

j=1

∑n

i′=1

∑mi′
j′=1

,
∑

i,j
= ∑n

i=1

∑mi

j=1
,

and
∑

i′,j′ = ∑n

i′=1

∑mi

j′=1
for notational conciseness. In the

presence of correlation, we mimic the GEE approach by
imposing an independence working assumption and continue
to employ θ̂ to estimate θ.

2.2. Test Statistic of SRAT

Under model (1), evaluating whether G influence Y after
adjusting for X, corresponds to testing the null hypothesis
H0 : β = 0, that is, β1 = β2 = · · · = βp = 0. To test H0, we
mimic the variance component tests and impose a working
assumption that β1, β2, . . . , βp follow some common distribu-
tion with mean 0 and variance τ2. Then testing H0 : β = 0
is equivalent to testing H0 : τ = 0, which can be performed
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based on a pseudo score statistic corresponding to (3). Specif-
ically, to derive the pseudo-score statistic, we first consider a
smoothed version of L(α, β), namely

Lsm(α, β) = n−2
∑
i,j,i′,j′

I(Yij > Yi′j′)Kh

× {α�(Xij − Xi′j′) + β�(Gij − Gi′j′)}, (4)

as in Ma and Huang (2007), where Kh(x) = K(x/h), K is
a smooth cumulative distribution function with K(x) = 1 −
K(−x), and h is a bandwidth of order n−ν with ν ∈ [1/5, 1/3)
which ensures the consistency of both the score function
and its corresponding derivative functions (Pagan and Ullah,
1999). Then for a given α and writing β = τb where b1, . . . , bp

are with iid with zero mean and unit variance, we may derive
a test statistic for H0 : τ = 0 as

Q(α) = E[{∂Lsm(α, τb)/∂τ}2 | D = S(α)�S(α),

where

S(α) = n−2
∑
i,j,i′,j′

I(Yij > Yi′j′)(Gij − Gi′j′)Kh(α
�Xij − α�Xi′j′)

= n−1
∑

i,j

Rij(α)Gij . (5)

Rij(α)=n−1
∑

i′,j′ sign(Yij−Yi′j′)Kh(α
�Xij−α�Xi′j′) and Kh(x)=

∂Kh(x)/∂x. The intuition behind S(α) being a valid
pseudo-score vector is that, under H0, Yij and Gij are
independent given α�

0 Xij and thus E{I(Yij > Yi′j′)(Gij −
Gi′j′) | α�

0 Xij = α�
0 Xi′j′ } = 0, where α0 is the true value of α.

One can view S(α0) as a scaled estimator of this expectation,
which should be close to 0 under H0. Since α0 is unknown, we
estimate it under the null as α̂ = arg maxαL(α,0) and con-

struct the final test statistic as Q̂ = n‖S(α̂)‖2 = R̂�(GG�)R̂,
where ‖ · ‖ denotes the L2 norm, R̂N×1 = [Rij(α̂)]i=1,...,n;j=1,...,mi

and GN×p = [Gij]i=1,...,n;j=1,...,mi
. Similar to GEE-SKAT and

LME-SKAT, we can easily incorporate weights in the test
statistic by replacing GG�in Q̂ with GWG�, where W =
diag{w1, . . . , wp} and wk is a pre-specified weight based on
prior knowledge. For example, wk can be chosen as a func-
tion of MAF to upweight rare variants (Wu et al., 2011). For
simplicity of the presentation, we focus on the unweighted
statistic.

In the absence of covariates, the score vector (5) reduces to

n−1
∑

i,j

{
n−1

∑
i′,j′

sign(Yij − Yi′j′)

}
Gij ∝ N−1

∑
i,j

(Rij − R̄)Gij,

where R̄ = N−1
∑n

i=1

∑mi

j=1
Rij, and Rij is the rank of Yij among

{Yi′j′ , j′ = 1, . . . , mi′ , i
′ = 1, . . . , n}. When all participants are

unrelated (i.e., mi = 1) and Gij is a binary variable, S(α)
reduces to the Mann–Whitney U statistic and thus SRAT
includes the Wilcoxon rank sum test as a special case.

2.3. Perturbation Resampling

In the Appendix, we show that S(α̂) → 0 in probability under
H0. Using similar arguments as given in the Appendix and
Sherman (1993), one may also show that

√
nS(α̂) is asymp-

totically normal with mean 0 and some covariance matrix �

under H0. Hence, the test statistic Q̂ follows a mixture of
χ2 distribution with mixing constants being the eigenvalues
of �. In practice, empirically estimating � is challenging due
to the unknown transformation function and error distribu-
tion. Here, we employ a perturbation resampling method to
approximate the null distribution of

√
nS(α̂) and Q̂ similar to

the resampling procedure proposed in Jin et al. (2001). Specif-
ically, let V = (V1, . . . , Vn)

� be a vector of iid positive random
variables that are independent of the data with E(Vi) = 1 and
Var(Vi) = 1. We perturb the pseudo-score statistic S(α̂) as
S∗(α̂∗

), where

S∗(α) = 1

(
∑n

i=1
Vi)2

∑
i,j,i′,j′

ViVi′I(Yij > Yi′j′)(Gij − Gi′j′)Kh

× (α�Xij − α�Xi′j′)

and α̂
∗ = arg maxαL

∗(α,0), and L∗(α,0) = ∑
i,j,i′,j′ ViVi′

I(Yij > Yi′j′)I(α�Xij > α�Xi′j′).
Following similar arguments as in Jin et al. (2001) and

Cai and Cheng (2008), one may show that the unconditional
distribution of

√
nS(α̂) can be approximated by the condi-

tional distribution of
√

n
{
S∗(α̂∗

) − S(α̂)
}

given the observed
data D . In practice, to obtain the above approximation, one
may generate a large number, B, of realizations of V, and
calculate S∗(α̂∗

) for each realized sample. The null distribu-

tion of Q̂ can be approximated by the empirical distribution
of Q̂∗ = n‖S∗(α̂∗

) − S(α̂)‖2. The p-value for testing H0 may

be directly obtained as p∗ = B−1
∑B

b=1
I(Q̂∗

b > Q̂), where Q̂∗
b

is the bth realization of Q̂∗. However, for very small p-
values, a large of number of perturbations is required to
obtain accurate p-values. Alternatively, one can first obtain
the variance–covariance matrix estimate �̂ through perturba-
tion resampling and then apply algorithms (Liu et al., 2009;

Kuonen, 1999) to approximate the distribution of ‖N(0, �̂)‖2.
Specifically, a saddlepoint approximation can be used to
approximate the distribution of ‖N(0, �̂)‖2 based on the

eigenvalues of �̂. Such an approach is computationally more
feasible than calculating p-value based on p∗, since only a few
hundreds repetitions of perturbation are needed to get a sta-
ble estimate of �. Throughout, we use Kuonen’s saddlepoint
approximation method for our numerical studies due to its
simplicity, stability, and accuracy.

3. Simulation Studies

We present results from extensive simulation studies evaluat-
ing the performance of SRAT and comparing it to existing
methods with respect to empirical size and power under a
variety of settings. We first describe the data generating pro-
cess in Section 3.1 and then present some of the main results
for continuous phenotype with multiple causal variants in
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Figure 1. Family structure for simulations. The squares
represent the founders and the circles represent subjects gen-
erated from the founders. The black circles represent subjects
used in the analysis.

Section 3.2. Additional details on the simulation results for
binary phenotype as well as for the case without covariates
(Web Appendix A) and sensitivity analysis of SRAT on band-
width (Web Appendix B) can be found in the Supplementary
Materials.

3.1. Family Structure and Data Generation

We simulate the familial data on the genotypes and pheno-
types under the family structure shown in Figure 1. Each
family consists of six individuals of the same generation, com-
ing from four nuclear families. Subjects from the same nuclear
families are siblings, while subjects from different nuclear fam-
ilies are first-cousins. For each replication, we first generate
complete underlying data for n = 500 families (i.e., N = 3000
subjects) and then randomly sample a subset of 2000 subjects
to form D to allow for varying family sizes. Throughout, we
use 1000 simulation replications to compute the empirical size
and 500 replications to evaluate the empirical power.

Genotypes are generated based on the linkage disequilib-
rium structure of the ASAH1 gene. We use HAPGEN2 (Su
et al., 2011) and the CEU sample of the International HapMap
Project (Altschuler et al., 2005) to generate haplotypes for
subjects 1–6 in Figure 1 at each of the 93 SNPs. Then hap-
lotypes of subjects 7–10 are randomly generated from their
parents, subjects 1 and 2. Subsequently, we generate the
genotypes of the subjects in the study population (black cir-
cles in Figure 1) from their parents, respectively. Since the
genomic regions are relatively small, recombination would be
extremely rare and hence not considered in the creation of
the offspring genotypes. Based on the Illumina 500 K plat-
form, we included a total of p = 14 tagged SNPs to form the
SNP-set. For comparisons, we also apply existing methods
including LME-SKAT (for continuous Y only), GEE-SKAT,
and a minimum p-value approach that combines results from
single variant tests, denoted by GEE-MinP, to evaluate the
significance of the association. For GEE-MinP, we calculate
the effective number of markers based on Gao et al. (2010).
Two of these 14 SNPs have MAF lower than 5% (MAF = 0.6
and 3.0%). To improve power for detecting signals from rare
variants, we also consider weighted versions of SRAT, GEE-
SKAT, and LME-SKAT. Specifically, for weighted analysis,
we use the Beta(1, 5) weights with wk = 5(1 − MAFk)

4 to

weight up SNPs with lower MAF. All existing methods can
incorporate covariates by calculating the test statistics based
on conditional residual under their corresponding null models.

Across all settings, we generated data using a random
effects set up as in (2) with random effects aij = εG

ij + εE
ij , where

the shared genetic factor εG
i = (εG

i1, ε
G
i2, . . . , ε

G
i6)

� is generated
from N(0, σ2

G�), � is the 6 × 6 kinship matrix (Lange, 1997),
and the environmental factor εE

i = (Zi1, Zi1, Zi2, Zi2, Zi3, Zi4)
�

with Zik, k = 1, 2, 3, 4 generated from independent N(0, σ2
E).

3.2. Summary of Simulation Results

We first considered continuous phenotype in the presence of
covariates, where we generated q = 4 covariates with Xij,1 ∼
Bernoulli(0.5), Xij,2 ∼ 2Xij,1 − 1 + γ�

2 Gij + N(0, 1), Xij,3 ∼
2Xij,1 − 1 + γ�

3 Gij + N(0, 1), and Xij,4 = Xij,2Xij,3 + γ�
4 Gij. We

let γ2 = γ3 = γ4 = 0 for the setting with X independent
of G; and γ2 = (−1, 0, 0, . . . , 0)�, γ3 = (0, −1, 0, . . . , 0)�,
γ4 = (1, 1, 1, . . . , 1)�/14 for the case of X dependent on
G. Given X and G, we then generated correlated Yij from
exponential (mean=eηij ), where ηij = α�Xij + β�Gij + aij,
α = (1.0, 0.0, 0.5, −0.5)�, and βk = τ| log10(MAFk)| with τ=0
for the null model and τ = 0.01, 0.02, . . . , 0.05 for the alter-
native models.

Figure 2a shows the QQ plots of the p-values for all four
methods with and without weighting when X and G are
independent of each other. The empirical distribution of the p-
values from SRAT matches the theoretical distribution. Both
LME-SKAT and GEE-SKAT appear to have mild bias in esti-
mating the null distribution of their test statistics due to
model mis-specification. The type I errors of GEE-MinP are
substantially inflated. As shown in Figure 2b, SRAT is sub-
stantially more powerful than existing methods, despite the
fact that existing methods also have inflated type I errors.
In Figure 3, we compare the empirical distribution of the p-
value to its theoretical distribution under the null for the case
when X is dependent on G. In this setting, all three exist-
ing methods have substantially inflated type I errors due to
model mis-specification while SRAT is able to attain desired
type I error rates. These results demonstrate the robustness of
SRAT and potential power gain over existing methods when
the outcome has a skewed distribution.

For binary phenotype, we generated (Xij,Gij, ηij) under
the same models as described above and then generated
Yij ∼ Bernoulli(πij), where πij = 1 − exp{− exp(ηij)}. Details of
the results can be found in Figure 1 of the Supplementary
Materials. In general, we find that when X is independent
of G, both SRAT and GEE-SKAT maintain type I errors
well and even GEE-MinP attains reasonable size. Under the
alternative, SRAT and GEE-SKAT achieve similar power
while GEE-MinP has slightly lower power. It is not sur-
prising that SRAT and GEE-SKAT attain similar power for
the binary case since the rank and the actual outcome val-
ues are essentially the same. On the other hand, when X
and G are correlated, SRAT again attains correct type I
errors while both GEE-SKAT and GEE-MinP have substan-
tially inflated type I errors similar to the case for continuous
phenotype.

We also performed additional simulations under the simple
setting in the absence of covariates for both continuous and
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Figure 2. Continuous phenotype with uncorrelated X and G. (a) Empirical size (-U denotes unweighted analysis; -W
denotes weighted analysis). (b) Empirical power.

binary phenotypes. We considered both the case with signals
from multiple variants as specified above and with each of the
SNP being the single causal variant at a time. Details of the
simulation settings are summarized in Web Appendix A and
results are shown in Figure 2 of the Supplementary Materials.
All methods except for GEE-MinP with continuous outcome
do a reasonable job in controlling type I error. For the multi-
ple causal variants setting, the relative performance in terms
of power has a similar pattern as described above. Under the
setting with single causal variants, our method still outper-
forms other existing methods for continuous phenotype and

performs similarly to GEE-SKAT and GEE-MinP for binary
outcome.

4. Application

To illustrate our proposed method, we apply SRAT, GEE-
SKAT, and LME-SKAT to data from the Framingham
Offspring Study (FOS) (Feinleib et al., 1975). The FOS was
initiated in 1971 and enrolled 5124 adult offspring and the
spouses of participants in the Framingham Study (Kannel
and McGee, 1979). These study participants have been fol-
lowed over time to assess various clinical outcomes and
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Figure 3. Continuous phenotype with correlated X and G. -U denotes unweighted analysis; -W denotes weighted analysis.

measure a wide range of biological and genetic markers.
This study has provided valuable resources for investigat-
ing epidemiological and genetic risk factors of cardiovascular
diseases (CVD). As an example, we applied the three SNP-
set tests to identity genes that might be associated with
C-reactive protein (CRP), an inflammatory marker that has
been sought for use in CVD risk stratification and preventive
decision making (Ridker et al., 2000). We extracted genotype
information from the Framingham SNP Health Association
Resource (SHARe) data through dbGaP (access number:
phs000007.v3.p2), which contains 6923 individuals genotyped
on the Affymetrix 500 K SNP array. We used the genotype
data to create the full kinship matrix that is needed for imple-
menting LME-SKAT.

After merging the genotype data from Framingham SHARe
with the phenotype data from FOS, our final dataset con-
sists of 2492 participants from FOS, including 1153 men and
1339 women who had data on both genotype and the CRP
outcome. Since the synthesis of CRP is mainly regulated by
interleukin-6 (IL6) and other inflammatory cytokines and is
also produced locally in atherosclerotic lesions by smooth
muscle cells (SMCs) lymphocytes and monocytic cells (Paffen
and Moniek, 2006; Shrivastava et al., 2015), we considered a
total of 11 candidate genes including IL6, interleukin-1beta
(IL1B), Transforming Growth Factor Beta 2 (TGFB2), and
other genes that relate to inflammatory cytokines and SMCs.
For each gene, we perform testing based on SRAT, GEE-
SKAT and LME-SKAT without weighting and with Beta(1,
5) weight. We also included results on the methods based
on log-transformed CRP (logCRP) to illustrate the impact of
transformation on GEE-SKAT and LME-SKAT. The analyses
are conducted separately for men and women, adjusting for
age and two leading principal components (PCs) accounting
for population stratification. Due to the complicated family

structure in FS and FOS, we used the LASER method (Wang
et al., 2015) to identify ancestry PCs.

Figure 4 shows the results for the aforementioned 11
genes. For example, for the IL1B gene, we included six SNPs
(rs315920, rs4251961, rs2637988, rs4251984, rs4251985, and
rs928940) that are available from the Framingham SHARe
data. The IL1B has been previously reported as associated
with higher CRP levels in patients with CVD (Latkovskis
et al., 2004). We found a significant association between CRP
and the IL1B gene in men based on the unweighted SRAT
(p-value = 0.045). However, this association is not detected
using the GEE-SKAT (p-value = 0.866) or LME-SKAT (p-
value = 0.920). The discrepancy in the p-values could in part
be attributed to the skewness in the distribution of CRP. With
logCRP, the p-values of GEE-SKAT and LME-SKAT become
smaller but are still greater than the p-value of SRAT, which
is invariant to any monotone transformation of the phenotype.
For the IL6 gene (p = 3), LME-SKAT has a much smaller p-
value (0.001) compared to the p-values of GEE-SKAT (0.027)
and SRAT (0.053) in the unweighted analysis in men. How-
ever, the p-values of these three tests become very similar
after the log transformation of the CRP outcome. For the
TGFB2 gene (p = 18), SRAT detects a significant associa-
tion in both unweighted (0.034) and weighted (0.010) analysis
among women. However, this association was not detected by
GEE-SKAT or LME-SKAT.

5. Discussion

One main advantage of the proposed SRAT procedure is
its robustness, with key features being its scale invariance
with respect to outcome and flexibility in incorporating the
unknown correlation structure. Our numerical results suggest
that our procedure is not only more robust and less sus-
ceptible to inflated type I errors due to mis-specification in



882 Biometrics, September 2017

Figure 4. Results from testing genetic association between candidate genes and the CRP or logCRP in the Framingham
cohort based on SRAT, GEE-SKAT, and LME-SKAT for male and female subjects separately. For all methods, we considered
both unweighted (U) analysis and weighted (W) analysis with Beta(1,5) weights.

the outcome distribution or correlation structure, but also
more powerful than existing methods when the outcome has
a skewed distribution. Although some simple transformation
can potentially be applied to the outcome prior to the analy-
sis for GEE-SKAT or LME-SKAT, it is not always clear what
transformation is appropriate. It is interesting to note that
for binary outcomes, GEE-SKAT is fairly robust to the mis-
specification in the link function and attains similar power
as SRAT under such settings in the absence of covariates
depending on the SNPs. This is in part due to the robust-
ness of logistic regression under link violation as suggested in
Li and Duan (1989) and Eguchi and Copas (2002), as well
as the fact that the ranks of the outcomes are essentially the
same as the actual outcome values in this setting.

Unlike other parametric and semi-parametric testing pro-
cedures, the family correlations are treated as nuisance
parameters in calculating SRAT. Although we use the working
independence assumption, we effectively employ the “sand-
wich” estimator in estimating the variance of the score
vector and our inference procedure does not assume inde-
pendence. The proposed SRAT test requires smoothing and
hence depends on the bandwidth parameter h. Our sensitiv-
ity analysis, shown in Web-Appendix B of the Supplementary
Materials, indicates that the performance of SRAT is not sen-
sitive to the choice of h provided that it is in the correct
range.

Although in this case SRAT is motivated to analyze familial
data, it can also be used to analyze data from unrelated indi-

viduals (i.e., mi = 1) and is expected to be more robust and
powerful than SKAT under settings where the outcome dis-
tribution is skewed. The proposed testing procedure assumes
linear genetic effects. The incorporation of nonlinear effects
can be achieved by implicitly specifying the genetic effects
through a kernel machine regression framework similar to
those considered in Liu et al. (2007), which warrants further
research. Similar to other gene-set analysis methods, SRAT
also relies on user-defined group structure to form the marker
set. Various knowledge bases such as gene structure, recom-
bination hotspots, protein–protein interaction networks and
pathway information can be used to form marker sets. Data
adaptive approach to forming such groups warrants future
research.

Due to the need of resampling for p-value calculation and
the rank-based estimation under the null model, the proposed
method is more computationally intensive compared to other
competing methods in the presence of covariates, although
for the simple case without covariates, the test statistic can
be much simplified resulting in a substantially faster pro-
cedure even when compared to existing methods. However,
similar to other score-type tests, the null model only needs
to be fit once and the model fit results can be used repeat-
edly to test the association of the phenotype with a large
number of SNP-sets. In addition, we only rely on resampling
to estimate the covariance matrix of S(α̂) and subsequently
employ saddlepoint approximation to calculate the p-value.
Accordingly, only a few hundreds replications of resampling
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are needed for each p-value calculation to achieve a reasonable
accuracy in approximation. Software package for implement-
ing SRAT is available upon request and will be made publicly
available at CRAN and/or GitHub. The core algorithm was
written in C++ and then integrated with R via the Rcpp and
RcppArmadillo packages.

6. Supplementary Materials

Web Appendices and Figures referenced in Sections 3 and 5
are available with this article at the Biometrics website on
Wiley Online Library.
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Appendix

To establish the asymptotic properties of S(α̂), we require
all assumptions given in Sherman (1993). Additionally, we
assume that each family potentially has M members and we
let δij be a binary indicator denoting whether the jth member
of the ith family is observed. We assume that the underly-
ing data D 0 ={Di = (D�

i1, ....,D
�
iM)�, i = 1, . . . , n} consist of

iid random vectors and the underlying data also follow the
NPT model:

H(Yij) = α�
0 Xij + β�

0 Gij + εij, j = 1, . . . , M, i = 1, . . . , n.

We further assume that missing is completely at random with
P(δij = 1|Di) = π and Dij’s have the same marginal distribu-
tion. Under the NPT model and H0,

P(Yij ≤ y|Xi,Gi) = P(Yij ≤ y|α�
0 Xij)

= g{H(y) − α�
0 Xij} ≡ Fα�

0Xij
(y).

Then, we may write L(α,0) = n−2
∑n

i=1

∑M

j=1

∑n

i′=1

∑M

j′=1

δijδi′j′I(Yij > Yi′j′)I(α�Xij > α�Xi′j′) and it follows similar
arguments as given in Sherman (1993) that α̂ = argmaxα L

(α,0) → α0 = argmaxα P(Yij > Yi′j′ , α�Xij > α�Xi′j′) in prob-
ability.

S(α) =
∫

1

n

n∑
i=1

×
{

M∑
j=1

δijGijsign(Yij − y)Kh(α
�Xij − x)

}
F̂α(dx, dy),

where

F̂α(x, y) = 1

n

n∑
i′=1

{
M∑

j′=1

δi′j′I(α�Xi′j′ ≤ x, Yi′j′ ≤ y)

}
.

It follows from a uniform law of large numbers (Pollard,

1990) that supα,x,y |F̂α(x, y) − Fα(x, y)| p−→ 0, where Fα(x, y) =
πM

∫ x

−∞ fα(v)Fα(y|v)dv, fα(·) is the marginal density function

of α�Xij, and Fα(y|v) = P(Yij ≤ y|α�Xij = v). This, together
with the uniform consistency of non-parametric kernel estima-
tors (Pagan and Ullah, 1999) implies that uniformly in α,

S(α) = n−1πM

n∑
i=1

M∑
j=1

∫
δijGijsign(Yij − y)Kh

×(α�Xij − x) Fα(dy|x)fα(x)dx + op(1)

= n−1πM

n∑
i=1

M∑
j=1

δijGij

{
2Fα(Yij|α�Xij) − 1

}
× fα(α

�Xij) + op(1)

p−→ s(α) ≡π2M2E
[
Gij

{
2Fα(Yij|α�Xij) − 1

}
× fα(α

�Xij)
]
. (A1)

From (A1) and the fact that Gij ⊥ Yij given α�
0 Xij, we have

Fα0(Yij|α�
0 Xij) = Fα�

0Xij
(Yij) following a Uniform(0,1) distribu-

tion and

S(α0)
p−→ s(α0) = π2M2E

[
E(Gij | α�

0 Xij)E

×
{

2Fα�
0Xij

(Yij) − 1
}

fα0(α�
0 Xij)

]
= 0.

It follows from α̂
p−→ α0 and the uniform convergence of

S(α) → s(α) in probability that S(α̂)
p−→ 0.


