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Control for Population Structure and Relatedness
for Binary Traits in Genetic Association Studies
via Logistic Mixed Models

Han Chen,1,8 Chaolong Wang,1,2,8 Matthew P. Conomos,3 Adrienne M. Stilp,3 Zilin Li,1,4 Tamar Sofer,3

Adam A. Szpiro,3 Wei Chen,5 John M. Brehm,5 Juan C. Celedón,5 Susan Redline,6

George J. Papanicolaou,7 Timothy A. Thornton,3 Cathy C. Laurie,3 Kenneth Rice,3 and Xihong Lin1,*

Linear mixedmodels (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relat-

edness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary

trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the

LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model

approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a

logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and

individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population struc-

ture and relatedness when analyzing binary traits in a wide variety of study designs.
Introduction

Population stratification is a major source of confounding

in genetic association studies.1 With the recent develop-

ment of computationally efficient algorithms, linear

mixed models (LMMs) have become popular in genome-

wide association studies (GWASs) for controlling popula-

tion stratification, as well as familial or cryptic related-

ness.2–10 However, in human genetics, GWASs are often

conducted using binary traits; for example, case-control

studies sample disease subjects (case subjects) and dis-

ease-free subjects (control subjects) and collect their geno-

type and exposure data retrospectively. Cohort studies

follow a group of healthy subjects prospectively and collect

their subsequent status evaluations with respect to the

binary disease outcome. Despite the popularity of the use

of LMMs in binary trait GWASs, their reliance on a gener-

ally invalid assumption appears to have been overlooked.

Specifically, as typically used, LMMs assume that the trait

has constant residual variance, which is usually violated

by binary traits in the presence of covariates. As a conse-

quence, we will show that in the presence of population

stratification, fitting LMMs to binary traits can fail to con-

trol for type I error rates and yield incorrect p value esti-

mates. Typical use of LMMs also ignores the biased

sampling in case-control studies, which leads to biased ef-

fect estimates.

Our study of LMMs for binary traits was motivated by

analyses of the binary trait asthma in the Hispanic Com-
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munity Health Study/Study of Latinos (HCHS/SOL), origi-

nally performed using LMMs with three random effects to

account for genetic relatedness as well as household and

block group membership from its multi-stage sampling

design. For asthma, ancestry is a known confounder of ge-

netic associations in Hispanic/Latino populations, and in

HCHS/SOL the proportion of asthma cases varies widely

by ancestry group (e.g., 25.6% in Puerto Ricans versus

4.1% in South Americans, see Table 1).11 Despite regression

adjustment for ancestry by including principal compo-

nents (PCs)12,13 and indicators for ancestry group as cova-

riates, the LMM results for this trait appear invalid

(Figure 1), showing clear conservatism/anti-conservatism

for variants with the minor allele that is respectively less

common/more common in Puerto Rican heritage versus

all other ancestry groups.

Based on published case-control GWASs,14–17 this con-

cerning behavior does not appear to be well known. Users

of LMMs for binary traits have appealed to Pirinen et al.,9

who showed that linear models are a sufficiently close

approximation to logistic models for p value calculations

when the effect size of a genetic variant is small and in

the absence of population stratification. We will show

that in the presence of population stratification, fitting

LMMs to binary traits in both cohort and case-control

studies can yield incorrect type I error rates in GWASs

due to heteroscedasticity, that is, residual variances in a

model that are not constant with respect to different values

of covariates.18 Like linear regression, LMMs assume
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Table 1. Numbers of Asthma Case Subjects and Control Subjects in
Six Hispanic/Latino Background Groups in HCHS/SOL after Quality
Control of Samples

Group
Case
Subjects

Control
Subjects

Sample
Size

Proportion
of Case
Subjects

Trait
Variance

Central
American

55 1,173 1,228 4.5% 0.043

Cuban 182 1,722 1,904 9.6% 0.086

Dominican 99 933 1,032 9.6% 0.087

Mexican 172 4,189 4,361 3.9% 0.038

Puerto
Rican

478 1,390 1,868 25.6% 0.190

South
American

34 795 829 4.1% 0.039

Trait variance is calculated as the product of proportions of case and control
subjects.
homoscedasticity, that is, residual variances are constant

regardless of covariate values (Figure 2).19

Recently, liability threshold linear mixed models have

been proposed for case-control studies.20,21 Fitting these

models require knowing disease prevalence and accurate

heritability and liability estimates in the underlying study

population, whichmight not be available or might be diffi-

cult to specify in practice, especially when disease preva-

lence differs between subpopulation groups. For example,

in the HCHS/SOL, the asthma prevalence rates were

different in different ancestry background groups;11 in

case-control studies in the presence of population stratifi-

cation, it is difficult to specify the disease prevalence that

can be used for analysis when underlying subpopulation

groups are unknown and the disease prevalence rates

vary between underlying subpopulations. We will show

that these methods can fail to control for type I error

rates in the presence of moderate or strong population

stratification.

To address these issues, we propose using logistic mixed

models22 to account for both population stratification and

relatedness in genetic association studies of binary traits,

while naturally allowing for the non-constant variance of

these traits. Because logistic mixed models are computa-

tionally more expensive than LMMs and regular logistic

models, they have not been used in large-scale GWASs.

Although SAS PROC GLIMMIX allows for fitting logistic

mixed models with a genetic relationship matrix, it is

not feasible for large-scale GWASs because of its computa-

tional burden associated with fitting a large number of lo-

gistic mixed models, one per variant, across the genome.

We develop the generalized linear mixed model associa-

tion test (GMMAT), which requires fitting a logistic mixed

model under the null hypothesis only once per GWAS, and

is hence computationally feasible for large-scale GWASs.

Specifically, GMMAT first fits the null logistic mixed

model that includes as fixed effects only covariates,

including ancestry PCs, but no individual genetic variants,
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and uses random effects to account for residual population

stratification not captured by fixed effects PCs as well as

relatedness. When fitting this null model, GMMAT uses

penalized quasi-likelihood (PQL)22 and the computation-

ally efficient average information restrictedmaximum like-

lihood (AI-REML) algorithm.6,23 This fitted null model is

the same for all genetic variants in a GWAS. GMMAT

then applies a score test24 for each individual genetic

variant to test for its association with a binary trait. The

computational cost of the score test for each genetic

variant is negligible compared to the cost of fitting the

null logistic mixed model, so the procedure is computa-

tionally fast, even for large-scale GWASs.

As a full-modeling approach, GMMAT accounts for the

binary nature of the trait, in particular its non-constant

variance in the presence of covariates, and so correctly

controls type I error rates in the presence of population

stratification and relatedness. GMMAT can also allow for

complex sampling designs such as hierarchical designs

and allow for unobserved shared environmental effects

among sampled individuals by incorporating multiple

random effects.
Material and Methods

Logistic Mixed Models and Score Tests
For a single-variant test, we consider the following logistic mixed

model:

logitðpiÞ ¼ XiaþGibþ bi;

where pi ¼ Pðyi ¼ 1
��Xi;Gi; biÞ is the probability of a binary pheno-

type (e.g., disease status) for subject i, conditional on their covari-

ates, genotype, and random effects bi, Xi is a 1 3 p row vector of

covariates for subject i, a is a p3 1 column vector of fixed covariate

effects including an intercept, Gi is the genotype of a genetic

variant for subject i, and b is the genotype effect. We assume

that b � Nð0;PK
k¼1tkVkÞ is an n 3 1 column vector of random ef-

fects, where tk are the variance component parameters and Vk are

known n 3 n relatedness matrices. When the number of variance

components K ¼ 1, V1 is usually the genetic relationship matrix

estimated from a large number of genetic variants. We allow for

multiple random effects to account for complex sampling designs,

e.g., hierarchical designs, and environmental covariance structure.

The binary phenotypes yi are assumed to be independent condi-

tional on the random effects b.

To perform the score test for the null hypothesis H0: b ¼ 0, we

need to fit the null logistic mixed model, which is the same for

all genetic variants, as

logitðpi0Þ ¼ Xiaþ bi; (Equation 1)

where pi0 ¼ Pðyi ¼ 1
��Xi; biÞ. We fit Equation 1 using the penalized

quasi-likelihood (PQL) method.22 Specifically, let W ¼ diagfvi0g,
where vi0 ¼ pi0ð1� pi0Þ,X ¼ �XT

1 XT
2 / XT

n

�T
be an n3 p co-

variate matrix including an intercept, and ~Y be the ‘‘working vec-

tor’’ with components ~Yi ¼ Xiaþ bi þ v�1
i0 ðyi � pi0Þ. Under the

null hypothesis H0: b ¼ 0, we iteratively fit the working linear

mixed model ~Y ¼ Xaþ bþ ε where ε � Nð0;W�1Þ. We use the

computationally efficient AI-REML algorithm6,23 to estimate btk.
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Figure 1. Quantile-Quantile Plot of Association Test p Values from the Asthma GWAS Analysis in HCHS/SOL
(A) All SNPs.
(B) Category 1: SNPs with the ratio of expected variances in Puerto Ricans over non-Puerto Ricans less than 0.8.
(C) Category 2: SNPs with the ratio of expected variances in Puerto Ricans over non-Puerto Ricans between 0.8 and 1.25.
(D) Category 3: SNPs with the ratio of expected variances in Puerto Ricans over non-Puerto Ricans greater than 1.25.
Abbreviations are as follows: LMM, a joint analysis using LMMon the combined samples; LMMmeta, an inverse-variance weighted fixed
effects meta-analysis approach to combine LMM results from analyzing Puerto Ricans and non-Puerto Ricans separately.
After obtaining the variance component estimates, the estimates

of the fixed effects ba and random effects bb can be updated, fol-

lowed by the working vector ~Y. The process continues until

convergence.

At each iteration, we perform a matrix inversion based on Cho-

lesky decomposition with complexity of O(n3) and matrix multi-

plications with complexity of O(pn2 þ K2n2 þ p2n), where n is

the sample size, p is the number of covariates, and K is the number

of variance components. Thus, the total complexity of fitting a lo-

gistic mixed model with K known relatedness matrices is O(in3 þ
ipn2 þ iK2n2 þ ip2n), where i is the number of iterations required

to reach convergence.

The score for H0: b ¼ 0 is T ¼ GT ðy� bp0Þ, where G ¼
ðG1 G2 / Gn ÞT is the n 3 1 column vector of genotypes,

y ¼ ð y1 y2 / yn ÞT is the n 3 1 column vector of outcomes,

and bp0 is a vector of fitted values under H0, which is the

same for all SNPs. The estimated variance of the score is
The Am
VarðT jH0Þ ¼ GT bPG under the null hypothesis, wherebP ¼ bS�1 � bS�1
XðXT bS�1

XÞ�1XT bS�1
, and bS ¼ cW�1 þPK

k¼1btkVk.

The test for each genetic variant involves a vector-matrix-vector

multiplication and an inner product calculation for two vectors,

and thus the score test step has complexity of O(qn2 þ qn), where

q is the total number of genetic variants tested. Also, the score test

step can be easily parallelized if necessary. We use the Cþþ library

Armadillo to perform matrix and vector calculations. More details

about fitting the logistic mixed model and performing the score

test are given in Appendix A.
HCHS/SOL Genotyping and Statistical Analysis
HCHS/SOL subjects who consented to genetic studies had DNA

extracted from blood. These DNA samples were genotyped on

the SOL HCHS Custom 15041502 B3 array (custom content de-

signed and developed by Papanicolaou, Rotter, and Taylor) at
erican Journal of Human Genetics 98, 653–666, April 7, 2016 655
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Figure 2. True Mean-Variance Relationship for a Binary Trait
and the ConstantMean-Variance Relationship Assumed by Linear
Models, Illustrated by the Example from the Asthma Data in
HCHS/SOL
For a binary trait with the mean p, its variance is p(1 � p), which
varies with the mean. This heteroscedasticity is properly ac-
counted for by logistic regression. Linear models inappropriately
assume that the variance of the binary trait does not change
with the mean and is a constant (homoscedasticity). For example,
the variance of the binary trait (asthma status) in Puerto Ricans is
considerably larger than the variances in the other five popula-
tions, because Puerto Ricans have a much higher asthma disease
proportion than the other populations. This heteroscedasticity
caused by population stratification results in the p values calcu-
lated from LMMs being likely to be incorrect, but is properly taken
into account by logistic mixed models using GMMAT.
Illumina Microarray Services. This array comprised the Illumina

Omni 2.5M array (HumanOmni2.5-8v1-1) and additional custom

content selected for HCHS/SOL, including ancestry-informative

markers, variants characteristic of Amerindians, and known

GWAS hits.25 Illumina Microarray Services, LA Biomed, and the

SOL Genetic Analysis Center (GAC) performed quality control to

generate recommended SNP- and sample-level quality filters. Sam-

ples were checked for annotated versus genetic sex, gross chromo-

somal anomalies, relatedness and population structure, missing

call rates, batch effects, duplicate sample discordance, andMende-

lian errors. At the SNP level, checks were performed for Hardy-

Weinberg equilibrium, minor allele frequency (MAF), duplicate

probe discordance, and missing call rate.

Study participants were recruited via a multi-stage survey sam-

pling procedure, for which individuals were sampled within

households that were sampled within block groups.26 The study

includes genetic data from 12,803 individuals of Hispanic/Latino

origin, belonging to six different Hispanic/Latino background

groups.25 The HCHS/SOL study was approved by institutional re-

view boards at participating institutions, and written informed

consent was obtained from all participants. Standard quality con-

trol, similar to that described by Laurie et al.,27 was performed to

filter SNPs and samples of poor quality. Additionally, samples

missing information on asthma diagnosis and 56 samples identi-

fied as ancestry outliers from principal-component analysis were

removed, leaving a sample size of 11,222 for analysis. We also

filtered SNPs with a MAF less than 5% in this overall sample, re-
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sulting in a set of 1,299,221 autosomal SNPs to be analyzed. The

proportions of asthma cases in analyzed participants within

each of the genetic background groups of Central American, Cu-

ban, Dominican, Mexican, Puerto Rican, and South American

descent are 4.5%, 9.6%, 9.6%, 3.9%, 25.6%, and 4.1%, respectively

(Table 1). The Puerto Rican group is a clear outlier from the rest, so

we compared it to the collection of all other background groups,

which has a combined proportion of 5.8%. To account for poten-

tial shared environment effects resulting from the sampling

design, relatedness matrices representing household and block

group membership were included in addition to the standardized

genetic relationship matrix, totaling three random effects for the

linear and logistic mixed models. The top five PCs, as well as His-

panic/Latino background group indicators, were used to adjust for

ancestry in both models. Additional fixed effects covariates

included field center, sex, age, cigarette use, cigarette pack years,

and sampling weight (i.e., weights to account for disproportionate

selection of the sample according to the sample survey design26).

Treatment of sampling weight as a fixed effect in this way can

effectively adjust for the marginal effect of design variables.28
Simulation Studies
We perform coalescent simulations29 to generate genotypes for a

total of 8,000 founders with 1,000,000 independent SNPs from a

203 20 grid (Figure S1) tomimic spatially continuous populations

(20 individuals per cell) withmigration rate between adjacent cells

M ¼ 10 to represent population structure within Europe.30,31 To

simulate genotypes of an offspring cohort, we first sampled

(without replacement) 10 pairs of parents for each cell of the

203 20 grid from the original cohort and then simulated two chil-

dren for each family using the gene dropping algorithm,32 thus

obtaining 8,000 individuals in the offspring cohort. We combined

the two cohorts to get 16,000 individuals with both population

structure and relatedness. For individual j in family i, the probabil-

ity of being a case pij was calculated from

logit
�
pij

� ¼ a0 þ a1Zi þ aij;

where Zi ¼ 1 if family iwas from a 103 10 grid in the top left, and

Zi ¼ 0 otherwise. The parameters a0 and a1 were chosen such that

the disease prevalence was 0.28 in the high-risk population group

in the top left given no random effects and 0.05 in the low-risk

population group given no random effects. The random effects

were simulated as

ai ¼

0BB@
ai1
ai2
ai3
ai4

1CCA � N

0BB@
0BB@

0
0
0
0

1CCA; s2

0BB@
1 0 0:5 0:5
0 1 0:5 0:5
0:5 0:5 1 0:5
0:5 0:5 0:5 1

1CCA
1CCA;

where the variance component parameter s2 was set to 2. We

randomly sampled 10,000 individuals from the combined original

and offspring cohorts to form a simulated cohort study, and their

standardized genetic relationship matrix was calculated using

625,583 genetic variants withMAF greater than 5% in the founder

population. We removed family indicators and compared linear

and logistic mixed models using the genetic relationship matrix.

We included the top ten ancestry PCs as covariates in bothmodels.

We analyzed common genetic variants with MAF greater than 5%.

In the simulated case-control study for rare disease, we chose a0

and a1 such that the disease prevalence was 0.045 in the high-

risk population group in the top left given no random effects

and 0.005 in the low-risk population group given no random
016



effects. We randomly sampled 1,667 case subjects and 8,333 con-

trol subjects from the combined original and offspring cohorts to

form a case-control study with a total sample size of 10,000 and a

case-control ratio of 1:5. We performed the same analysis as

described above.
Results

Analysis of HCHS/SOL Asthma GWAS Data

We compared the results from LMMs and logistic mixed

models using GMMAT for an analysis of physician-diag-

nosed asthma in the population-based HCHS/SOL cohort

study.

Figure 1A shows the behavior of the overall quantile-

quantile (QQ) plots from each method in the asthma anal-

ysis. The inflated results from the LMM are caused by

violation of its constant residual variance (homoscedastic-

ity) assumption. For binary traits, population stratification

affects both population-specific means (disease preva-

lences in cohort studies) and variances of the trait; popula-

tion groups with disease prevalence closer to 0.5 have

larger variances (Table 1 and Figure 2). The mean-variance

relationship assumed in linear models and LMMs is mis-

specified for binary traits. Although confounding by popu-

lation structure can be accounted for by adjusting for

population groups or ancestry PCs, unequal binary trait

variances across different populations are not appropri-

ately modeled in linear models and LMMs. The variance

of the standard LMM-based test statistic for no genetic as-

sociation is underestimated when population groups with

larger binary trait variances (i.e., higher disease risk) also

have higher MAFs, thus larger genotypic variances. This

leads to inflation in the test statistic, and vice versa.

To demonstrate this, we partitioned all common SNPs

across the genome into three categories based on their

genotypic variances in Puerto Ricans and non-Puerto

Ricans: (1) the SNPs with the ratio of expected variances,

that is Var(SNP) ¼ 2MAFð1�MAFÞ, in Puerto Ricans

(high-risk group) over non-Puerto Ricans (low-risk group)

less than 0.8; (2) the SNPs with the ratio of Var(SNP) in

Puerto Ricans over non-Puerto Ricans between 0.8 and

1.25; and (3) the SNPs with the ratio of Var(SNP) in Puerto

Ricans over non-Puerto Ricans greater than 1.25. In this

classification, the category 1 SNPs (n ¼ 144,815 [11%])

have appreciably lower MAFs in Puerto Ricans (high risk)

than non-Puerto Ricans (low risk). The category 2 SNPs

have similar MAFs in both groups (n ¼ 982,805 [76%]).

The category 3 SNPs (n ¼ 171,601 [13%]) have appreciably

higher MAFs in Puerto Ricans (high risk) than non-Puerto

Ricans (low risk). Both LMMs and GMMAT perform well

for category 2 SNPs (Figure 1C). The problem with LMMs

is more apparent for category 1 and 3 SNPs: Figure 1B

shows conservative p values for category 1 SNPs, and

Figure 1D shows anti-conservative p values for category 3

SNPs, as expected. This indicates the p values calculated

from LMMs are likely to be incorrect for at least 24% of

SNPs in HCHS/SOL asthma GWASs. Meta-analysis by
The Am
analyzing Puerto Ricans and non-Puerto Ricans separately

after removing related individuals across the two groups

improves the LMM performance, but the results are still

not well calibrated for category 1 and 3 SNPs (Figures 1B

and 1D), probably due to the heteroscedasticity issue

caused by within-group population stratification. In

contrast, GMMAT performs well for all categories of SNPs

considered.

Simulation Studies

We also conducted extensive simulation studies under the

null hypothesis to illustrate this issue in various GWAS

case-control and cohort study designs, to exclude the pos-

sibility that LMM-inflated results in HCHS/SOL were

caused by polygenic effects. We restricted analyses to com-

mon SNPs with aMAF greater than 5%. First, in a simulated

cohort study of 10,000 individuals with cryptic related-

ness, we simulated two population groups with disease

prevalences of 28% (population 1) and 5% (population 2),

respectively, from a map of spatially continuous popula-

tions. The disease prevalences were chosen to mimic the

asthma disease proportions of Puerto Ricans and non-

Puerto Ricans in HCHS/SOL (Table 1). In both LMM and

GMMAT, we adjusted for the top ten ancestry PCs as fixed

effects covariates. Figure 3A includes results from 3,200

null simulated datasets with 625,583 SNPs and 10,000

related subjects per dataset. LMM has a type I error rate

of 1.26 3 10�7 at the nominal 5 3 10�8 level, compared

to 5.0 3 10�8 for GMMAT. Note that because more than

2 billion p values are included, type I error rate estimates

at this level are accurate with standard error 5 3 10�9.

Following the HCHS/SOL example, we partitioned all

the common SNPs into three categories: (1) the SNPs

with the ratio of expected variances in population 1

(high risk) over population 2 (low risk) less than 0.8; (2)

the SNPs with the ratio of expected variances in popula-

tion 1 over population 2 between 0.8 and 1.25; and (3)

the SNPs with the ratio of expected variances in popula-

tion 1 over population 2 greater than 1.25. Category 1

includes the SNPs that have appreciably lower MAFs in

population 1 than population 2 (24%). Category 2 in-

cludes the SNPs that have comparable MAFs in the two

populations (58%). Category 3 includes the SNPs that

have appreciably higher MAFs in population 1 than popu-

lation 2 (18%). For category 2 SNPs, both LMM and

GMMAT properly control for type I error rates (Figure 3C).

However, despite adjusting for ancestry PCs, LMMs have

deflated type I error rates for category 1 SNPs (Figure 3B)

and inflated type I error rates for category 3 SNPs (Fig-

ure 3D). LMMs often fail to control type I error rates in

the presence of moderate or strong population stratifica-

tion when differences in prevalence by population groups

cause large differences in binary trait variances between

populations, as demonstrated by our simulation studies

that were motivated by the HCHS/SOL study. However,

this issue is not always evident in the overall QQ plot using

all the SNPs in a GWAS, because the number of SNPs in a
erican Journal of Human Genetics 98, 653–666, April 7, 2016 657
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Figure 3. A Simulated Cohort Study with 10,000 Related Individuals
Quantile-quantile plots of association test p values from 3,200 simulation replicates under the null hypothesis of no genetic association,
each with 625,583 common SNPs, were combined to get more than 2 billion null p values.
(A) All SNPs.
(B) Category 1: SNPs with the ratio of expected variances in population 1 (high risk) over population 2 (low risk) less than 0.8.
(C) Category 2: SNPs with the ratio of expected variances in population 1 (high risk) over population 2 (low risk) between 0.8 and 1.25.
(D) Category 3: SNPs with the ratio of expected variances in population 1 (high risk) over population 2 (low risk) greater than 1.25.
typical GWAS is usually in the range of 105 and 106, confi-

dence intervals are relatively wide, and inflation and defla-

tion are likely to mask each other in the overall QQ plot.

To illustrate this, Figure S2 shows results from only one

simulated dataset with 625,583 common SNPs and

10,000 subjects in the same setting as Figure 3. There is a

slight indication of inflation for p values from LMMs in

Figure S2A, but the results are conservative for category 1

SNPs (n ¼ 151,206 [24%]) (Figure S2B) and anti-conserva-

tive for category 3 SNPs (Figure S2D) (n ¼ 111,455

[18%]). These results show that the p values from LMMs

might be incorrect for at least 42% of SNPs in this analysis,

even though inflation and deflation might not be obvious

in the overall QQ plot.

We next simulated a case-control study with a total sam-

ple size of 10,000 and a case-control ratio of 1:5 from the
658 The American Journal of Human Genetics 98, 653–666, April 7, 2
same two populations as in our simulated cohort study

in the presence of cryptic relatedness. Compared to cohort

studies, case-control studies oversample cases. The disease

prevalence was 4.5% and 0.5% in population 1 (high risk)

and population 2 (low risk), respectively. Figure S3A shows

that GMMAT works well according to the QQ plot of

p values. The genomic control inflation factors show

that both LMM and GMMAT have appropriate median

p values. However, type I error rates at the nominal level

of 5 3 10�8 are 1.75 3 10�7 for LMM and 4.6 3 10�8 for

GMMAT, respectively. Moreover, when we divided the

SNPs into three categories as we previously described, we

observed strong deflation for category 1 SNPs (Figure S3B)

and strong inflation for category 3 SNPs (Figure S3D) from

LMM analysis, as seen in the simulated cohort study. Addi-

tional simulation studies show that the same problem for
016



LMMs also exists in cohort studies without cryptic related-

ness in the presence of population stratification (Figure S4).

Although confounding by discrete populations can be

appropriately accounted for by analyzing each population

separately via LMMs followed by meta-analysis (Figure S5),

this strategy does not perform well in the presence of con-

founding by continuous population structure (Figure S6).

Moreover, LMMs do not work well in case-control studies

of unrelated individuals with moderate to strong popula-

tion stratification (Figure S7). These suggest that despite

its wide use in both population-based and family-based

genetic association studies, LMMs are generally not appro-

priate for binary traits due to misspecified phenotype vari-

ance in the model, probably yielding incorrect p values

(see Appendix B for details).

We also performed additional simulations to compare

GMMAT with ROADTRIPS, which performs a retrospec-

tive test for association in case-control data,33 and the

recently developed liability estimator as a phenotype

(LEAP) approach. LEAP fits a liability mixed model that

accounts for case-control ascertainment.20 In the same

case-control setting as that described for Figure S7,

ROADTRIPS was not well calibrated due to failure to

fully account for population stratification. LEAP was

found to have well-behaved overall QQ plots but inflated

type I error rates for category 1 SNPs, regardless of

whether top ten ancestry PCs were adjusted as covariates

or not (Figure S8).

We next simulated case-control studies with the disease

prevalence of 1% by varying the case-control sampling

ratios in two population groups. We first considered

balanced cases and controls in the two populations. Spe-

cifically, when the case-control ratio is 1:1 in both groups,

there is no population stratification, and ROADTRIPS,

LEAP, LMMs, and GMMAT all properly control for type I

error rates (Figure S9). When the case-control ratios

are different but flipped in two populations (4:1 in popu-

lation 1 and 1:4 in population 2), there is population

stratification. However, because the variance of the

binary trait is the same in both population groups in

this situation, LMMs and GMMAT both perform well,

whereas ROADTRIPS has inflated type I error rates in

the tail and LEAP has an appropriate overall QQ plots

but inflated or deflated type I error rates for the SNPs

whose MAFs are different in the two population groups

(Figure S10).

We also considered a situation where the case-control

ratios are different in two populations (25:2 in population

1 and 25:48 in population 2) in a way that led to a

smaller variance of the binary trait in population 1

than in population 2. ROADTRIPS and LEAP adjusting

for the top ten PCs show inflation in the overall

QQ plot, and LEAP without covariates and LMMs have in-

flated type I error rates for category 1 SNPs and deflated

type I error rates for category 3 SNPs (Figure S11). In terms

of required computational resources, LEAP requires more

than 20 times the amount of memory compared to
The Am
GMMAT for an analysis of a case-control study of sample

size 10,000.

We also performed simulation studies to evaluate the

performance of GMMAT in estimating odds ratios of ge-

netic variants. We found that GMMAT had minor bias in

estimating odds ratios when fitting logistic mixed models

under the null and alternative hypotheses, compared to

the true parameter values in large samples (n ¼ 10,000).

In addition, the performance in terms of absolute bias ap-

pears to be similar to that using MACAU,34 a recently

developedMarkov Chain Monte Carlo-based mixed model

approach for binomial count data, while the GMMATodds

ratio estimates are less variable (Figure S12).

In the absence of population stratification, LMMs and

GMMAT have comparable power, but they are both

less powerful than logistic regression (Table S1). In the

presence of population stratification, LMMs have less

power than GMMAT for causal genetic variants with a

lower MAF in the high-risk population than in the low-

risk population (Table S1), due to its conservative type I

error rate control for such variants, as shown in

Figure S4B.

Computational Speed and Memory Usage

We benchmarked our GMMAT package against SAS PROC

GLIMMIX regarding computational speed and memory

usage. To fit a null model with sample size 2,000, GMMAT

takes less than 1.5% of the time required by SAS PROC

GLIMMIX when fitting a logistic mixed model with one

variance component, and less than 0.6% of the time

with three variance components (Table S2), yielding the

same numerical results to at least the fourth decimal

place. On average, with one variance component of

random effects, as is commonly used to account for ge-

netic relatedness in GWASs, SAS PROC GLIMMIX requires

about 28 min to fit a null model on a single core of an In-

tel Xeon E5-2690 CPU (2.90 GHz), compared to about

22 s using GMMAT. With three variance components of

random effects that account for complex sampling de-

signs in addition to genetic relatedness, SAS PROC

GLIMMIX requires about 1.2 hr, whereas GMMAT needs

still about 22 s. It takes about 14 min for GMMAT to

perform score tests for 1,000,000 genetic variants on the

same core, without parallelization. In practice, score tests

for different variants can be easily run in parallel in a

computing cluster, and testing each genetic variant takes

only about 0.8 ms.

GMMAT requires less than 1 GB memory in analyzing

2,000 individuals. With sample size 10,000, it takes about

18 min to fit the null model with one variance component

and 34 min with three variance components using

GMMAT, and about 3.6 hr to perform score tests for

1,000,000 genetic variants on a single core (about 13 ms

for testing each genetic variant) (Table S2). SAS PROC

GLIMMIX reports insufficient memory when 100 GB

memory is specified to fit the null model for 10,000 indi-

viduals, whereas GMMATrequires less than 14 GBmemory
erican Journal of Human Genetics 98, 653–666, April 7, 2016 659



for one variance component and 21 GB for three variance

components.
Discussion

We have proposed in this paper using logistic mixed

models to correct for population stratification and related-

ness in analyzing binary traits in GWASs. The proposed

GMMAT performs computationally efficient score tests

for genetic associations in cohort and case-control GWASs

with binary traits. We demonstrate that GMMAT is effec-

tive in controlling type I error rates. In contrast, even

when ancestry terms are included as covariates, applying

LMMs to binary traits can lead to incorrect type I error rates

in the presence of population stratification, particularly

when population groups have heterogeneous disease risks

or case-control ratios that result in different binary trait

variances. In such scenarios, LMMs are approximately

valid only when the MAF of the genetic variant being

tested for association is roughly the same in all population

groups, i.e., in the presence of no or weak confounding by

population structure. The homoscedasticity assumption

underlying standard LMMs is essential but has largely

been ignored in previous genetic association studies that

used LMMs for binary traits. Despite the widespread belief

that LMMs can be used to account for population stratifica-

tion for both continuous and binary traits, our results

show that LMMs can lead to incorrect type I error rates

and p values in the presence of population stratification

and relatedness. Recently, Conomos et al.25 showed that

violation of the homoscedasticity assumption could also

happen for continuous traits, and a model allowing for

group-specific residual variances outperformed standard

LMMs in such scenarios. For binary traits in discrete popu-

lation groups, when there is no or weak confounding by

population structure within each group, we have shown

that meta-analysis is a valid and effective approach for

combining results from analyzing each group separately

using LMMs (Figure S5). Moreover, we can use logistic

regression to analyze homogeneous unrelated samples,

which is more powerful than LMMs and GMMAT (Table

S1). In reality, however, population groups with no or

weak within-group confounding might not always be

clearly defined in large-scale genetic association studies,

especially for admixed populations. When within-group

population stratification remains, we have also shown

that a meta-analysis approach using LMMs is still mis-cali-

brated similarly to the standard LMM approach (Figure S6).

Furthermore, it is often difficult to check the validity of

LMMs by comparing group-specific binary trait variances

and MAFs. In contrast, such checking is not required by

GMMAT when fitting logistic mixed models.

In practice, QQ plots have been widely used for model

diagnostics in GWASs. Our results show that a well-

behaved QQ plot is not sufficient to identify invalid results

due to model misspecification. Specifically, an overall QQ
660 The American Journal of Human Genetics 98, 653–666, April 7, 2
plot can appear to show LMMs properly controlling type

I error rates for binary traits (Figure S2A), but this might

just reflect balancing out of conservative p values and

anti-conservative p values of different subsets of SNPs (cat-

egories 1 and 3) (Figures S2B and S2D). It is important to

note that these errors (incorrect p values) do not ‘‘cancel

out;’’ spuriously significant results, i.e., type I errors, are

not ‘‘corrected’’ by omission of true signals, i.e., type II er-

rors. More generally, looking just at the overall QQ plot of

all SNPs can lead to unwarranted beliefs that analyses (e.g.,

use of standard LMMs for binary traits) are appropriate,

when they can have serious deficiencies for large propor-

tions of the results.

In case-control studies, which oversample cases, LMMs

are subject to incorrect type I error rates due to unequal

variances of binary traits caused by population stratifica-

tion introduced by unequal case-control ratios from

different sampling schemes across population groups,

even if the disease prevalence is the same in all the subpop-

ulations and the overall case-control ratio is 1:1 (Fig-

ure S11). Because ROADTRIPS currently does not allow

for covariate adjustment, it does not work well in the pres-

ence of moderate to strong population stratification.35 The

recently developed liability mixed models20,21 require ac-

curate estimation of the disease prevalence as well as heri-

tability and liability in the underlying overall population,

which can be difficult to obtain in practice in the presence

of population stratification and unknown subpopulation

groups. These models are generally applicable in the pres-

ence of no or weak population stratification, e.g., when

the case-control ratios are the same across populations,

but can fail to control for type I error rates in the presence

of moderate or strong population stratification, e.g., when

the case-control ratios differ between populations. They

also currently cannot handle multiple random effects in

addition to those accounting for genetic relatedness,

such as household and block groups in HCHS/SOL. The li-

ability threshold mixed linear model (LTMLM) approach is

applicable only to population-based case-control study de-

signs with no confounders and low levels of relatedness,

because it cannot adjust for covariates or handle family

data.21 The LEAP method can accommodate covariates

and be applicable to family data, but inclusion of covari-

ates presents both technical and statistical challenges.20

GMMAT provides a flexible method that does not require

knowing disease prevalence or heritability and liability es-

timates, and provides valid p values while properly con-

trolling for type I error rates.

Recently, Song et al.36 proposed a genotype-conditional

association test that accounts for population structure in

association tests. However, as pointed out by the authors,

their approach does not account for family or cryptic relat-

edness. In contrast, our logistic mixed model approach is

more flexible and can account for both population struc-

ture and relatedness in population-based and family-based

cohort and case-control studies, as well as complex sam-

pling designs (as illustrated in our HCHS/SOL asthma
016



example). Therefore, our approach can be applied to a

much wider range of genetic association studies with fam-

ily data, cryptic relatedness, unobserved shared environ-

mental effects, and non-random sampling study designs,

in addition to population stratification, without the need

to model them in different ways.

We provide an open-source R package GMMAT for

fitting logistic mixed models and performing score-based

tests in GWASs. The package can also be applied to other

types of continuous and discrete traits in the general

framework of generalized linear models37 that allow for

different link functions and different mean-variance rela-

tionships. Furthermore, the score statistics obtained from

different studies of the same disease can be easily com-

bined in meta-analysis.38

The recently proposed MACAU algorithm34 imple-

mented Wald tests in mixed models for binomial count

data using a Markov Chain Monte Carlo-based approach.

However, performing Wald and likelihood ratio tests for a

large number of individual variants via logistic mixed

models is currently computationally impractical for mod-

erate- to large-sample GWASs and would require future

research on developing efficient algorithms. Unlike linear

mixed models, logistic mixed models can be directly used

to estimate odds ratios by fitting the models under the

alternative hypothesis. It is computationally feasible to es-

timate odds ratios by fitting alternative logistic mixed

models for a subset of candidate genetic variants of inter-

est. If computational issues can be resolved in the future,

logistic mixed models can also be useful for risk prediction

in GWASs.
Appendix A: Derivation of GMMAT

The Generalized Linear Mixed Model

The derivations below are based on generalized linear

mixed models (GLMMs), and logistic mixed models are a

special case of GLMMs when the link function is logit

and the dispersion parameter is fixed at 1. In the context

of single-variant test, we consider the following GLMM

hi ¼ gðmiÞ ¼ Xiaþ Gibþ bi;

whereXi is a 13 p row vector of covariates for subject i, a is

a p 3 1 column vector of fixed covariate effects including

the intercept, Gi is the genotype of the genetic variant of

interest for subject i, and b is the fixed genotype effect.

We assume that b � Nð0;PK
k¼1tkVkÞ is an n 3 1 column

vector of random effects, tk are the variance component

parameters, t is a K 3 1 column vector of tk, and Vk are

known n 3 n matrices. We also assume that given the

random effects b, the outcome yi is conditionally indepen-

dent with mean Eðyi
��bÞ ¼ mi and variance Varðyi

��bÞ ¼
fa�1

i vðmiÞ, where f is the dispersion parameter (for binary

and Poisson data f ¼ 1), ai are known weights, and vð,Þ
is the variance function. The linear predictor hi is a monot-

onous function of the conditional mean mi via the link
The Am
function hi ¼ gðmiÞ. For binary traits yi, mi ¼ pi ¼
Pðyi ¼ 1

��Xi;Gi; biÞ is the probability of the binary outcome

(e.g., disease status) for subject i.

For subject i, the quasi-likelihood given random

effects b is

qliða; b;bÞ ¼
Z mi

yi

ai
�
yi � m

�
fvðmÞ dm:

The log integrated quasi-likelihood function of ða; b;f; tÞ is

qlða; b;f; tÞ ¼ log

Z
exp

(Xn
i¼1

qliða; b;bÞ
)

3 ð2pÞ�n
2 j
XK
k¼1

tkVk j
�1
2

3 exp

8<:� 1

2
bT

 XK
k¼1

tkVk

!�1

b

9=;db:

(Equation A1)

Let

f ðbÞ ¼
Xn
i¼1

qliða; b;bÞ � 1

2
bT

 XK
k¼1

tkVk

!�1

b;

we can use Laplace method to approximate the n-dimen-

sional integral

Z
expff ðbÞgdbzð2pÞ

n
2 j � f 00

�
~b
�
j
�1
2
exp

n
f
�
~b
�o

;

thus Equation A1 becomes

qlða; b;f; tÞ ¼ � 1

2
log j

XK
k¼1

tkVk j � 1

2
log j � f 00

�
~b
�
j

þ f
�
~b
�
;

(Equation A2)

where

~b ¼ argmax
b

f ðbÞ

is the solution of f 0ðbÞ ¼ 0.

The first partial derivative of qliða; b;bÞ with respect

to b is

vqli
vb

¼ vqli
vmi

vmi

vhi

vhi

vb
¼ ai

�
yi � mi

�
fvðmiÞ

1

g 0ðmiÞ
ZT

i ;

where Zi is a 1 3 n vector of indicators such that bi ¼ Zib,

In ¼ �ZT
1 ZT

2 / ZT
n

�
, and the second derivative is

v2qli

vbvbT
¼ � aiZ

T
i Zi

fvðmiÞ½g 0ðmiÞ�2
� ai

�
yi � mi

�
v0ðmiÞZT

i Zi

fv2ðmiÞ½g 0ðmiÞ�2

� ai
�
yi � mi

�
g 00ðmiÞZT

i Zi

fvðmiÞ½g 0ðmiÞ�3
:
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For canonical link functions, vðmiÞg 0ðmiÞ ¼ 1, the last two

terms become 0. Let

D ¼ diagfg 0ðmiÞg;

W ¼ diag

(
ai

fvðmiÞ½g 0ðmiÞ�2
)
;

then Equation A2 becomes

qlða; b;f; tÞ ¼ �1

2
log j

XK
k¼1

tkVk j � 1

2
log j

Xn
i¼1

aiZ
T
i Zi

fvðmiÞ½g 0ðmiÞ�2

þ
 XK

k¼1

tkVk

!�1

j þ
Xn
i¼1

qli
�
a; b; ~b

�
� 1

2
~b
T

 XK
k¼1

tkVk

!�1

~b

¼ �1

2
log j

XK
k¼1

tkVkWþ I j þ
Xn
i¼1

qli
�
a; b; ~b

�

�1

2
~b
T

 XK
k¼1

tkVk

!�1

~b:

(Equation A3)

We assume that the weight matrix W changes slowly

with respect to the conditional means (following Breslow

and Clayton22), that is

vW

vmi

z0;

then we take the derivatives of Equation A3:

vqlða; b;f; tÞ
va

¼
Xn
i¼1

ai
�
yi � mi

�
fvðmiÞ

1

g 0ðmiÞ
XT

i ¼ XTWDðy� mÞ;

vqlða; b;f; tÞ
vb

¼
Xn
i¼1

ai
�
yi � mi

�
fvðmiÞ

1

g 0ðmiÞ
Gi ¼ GTWDðy� mÞ;

(Equation A4)

vqlða; b;f; tÞ
vb

¼
Xn
i¼1

ai
�
yi � mi

�
fvðmiÞ

1

g 0ðmiÞ
ZT

i �
 XK

k¼1

tkVk

!�1

b

¼ WDðy� mÞ �
 XK

k¼1

tkVk

!�1

b:

Under the null hypothesisH0 : b ¼ 0, if f and t are known,

we jointly choose baðf; tÞ and bbðf; tÞ to maximize Equa-

tion A3, then bbðf; tÞ ¼ ~bðbaðf; tÞ; b ¼ 0Þ because ~b maxi-

mizes f(b) for given ða; bÞ. Defining the working vector ~Y

with elements ~Yi ¼ hi þ g 0ðmiÞðyi � miÞ, the solution of

8<:
XTWDðy� mÞ ¼ 0

WDðy� mÞ ¼
 XK

k¼1

tkVk

!�1

b

can be written as the solution to the system
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24XTWX XTW

WX

 XK
k¼1

tkVk

!�1

þW

35� a
b

�
¼
�
XTW~Y
W~Y

�
:

Let S ¼ W�1 þPK
k¼1tkVk, P ¼ S�1 � S�1XðXTS�1XÞ�1

XTS�1, then

8><>:
ba ¼ �XTS�1X

��1
XTS�1 ~Y

bb ¼
	XK

k¼1

tkVk

!
S�1

�
~Y�Xba�

is the solution that maximizes Equation A3. We note that

~Y� bh ¼ ~Y�Xba � bb ¼
(
I�

 XK
k¼1

tkVk

!
S�1

)�
~Y�Xba�

¼ W�1S�1
�
~Y�Xba� ¼ W�1P~Y:

Estimation of Variance Component Parameters

Following Breslow and Clayton,22 we ignore the depen-

dence of W on t and use Pearson chi-square statistic to

approximate the deviance

�2f
Xn
i¼1

qliða; b;bÞ ¼
Xn
i¼1

�2

Z mi

yi

ai
�
yi � m

�
vðmÞ dm

z
Xn
i¼1

ai
�
yi � mi

�2
vðmiÞ

:

Then Equation A3 at the maximum becomes

qlðbaðf; tÞ; b ¼ 0;f; tÞz� 1

2
log j

XK
k¼1

tkVkWþ I j

�1

2

Xn
i¼1

ai
�
yi � bmi

�2
fvðbmiÞ

� 1

2
bbT

 XK
k¼1

tkVk

!�1 bb
¼ �1

2
log j

XK
k¼1

tkVkWþ I j � 1

2
ðy� bmÞTDWDðy� bmÞ

�1

2

�
~Y�Xba�TS�1

 XK
k¼1

tkVk

!
S�1

�
~Y�Xba�

¼ �1

2
log jSW j � 1

2

�
~Y� bh�TW�

~Y� bh�
�1

2

�
~Y�Xba�TS�1

 XK
k¼1

tkVk

!
S�1

�
~Y�Xba�

¼ �1

2
log jW j � 1

2
log jS j � 1

2
~Y
T
PW�1P~Y

�1

2
~Y
T
P

 XK
k¼1

tkVk

!
P~Y

¼ c � 1

2
log jS j � 1

2
~Y
T
P~Y:

Similarly, the restricted maximum likelihood (REML)

version is
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qlRðbaðf; tÞ; b ¼ 0;f; tÞ ¼ cR � 1

2
log jS j

� 1

2
log jXTS�1X j � 1

2
~Y
T
P~Y:

Let V0 ¼ diagfa�1
i vðmiÞ½g 0ðmiÞ�2g ¼ f�1W�1, then S ¼

fV0 þ
PK

k¼1tkVk, and the first derivatives of qlRðbaðf; tÞ;
b ¼ 0;f; tÞ with respect to f and t are

vqlRðbaðf; tÞ; b ¼ 0;f; tÞ
vf

¼ 1

2



~YPV0P~Y� trðPV0Þ

�
;

vqlRðbaðf; tÞ; b ¼ 0;f; tÞ
vtk

¼ 1

2



~YPVkP~Y� trðPVkÞ

�
:

We define the average information6,23 matrix AI with

the following entries

AIff ¼ 1

2
~YPV0PV0P~Y;

AIftk ¼
1

2
~YPV0PVkP~Y;

AItktl ¼
1

2
~YPVkPVlP~Y:

Let q be the variance component parameters to estimate,

when fs1, q ¼ ðf; tÞ, and AI is a (K þ 1)3(K þ 1) matrix.

For binary and Poisson data, f ¼ 1, q ¼ t, andAI is a K3 K

matrix containing only AItktl.

We use the following algorithm to fit the null GLMM:

1. Fit a generalized linear model with t ¼ 0 and get bað0Þ

and working vector ~Y
ð0Þ
;

2. Use qð0Þ ¼ Varð~Yð0ÞÞ=K (if f ¼ 1) or qð0Þ ¼ Varð~Yð0ÞÞ=
ðK þ 1Þ (if fs1) as the initial value of q;

3. For each k ¼ 0;1;.;K, update q using q
ð1Þ
k ¼

q
ð0Þ
k þ 2n�1fqð0Þk g2ðvqlRðqð0ÞÞ=vqkÞ;

4. Use ~Y
ð1Þ ¼ ~Y

ð0Þ
as ~Y and update qð2Þ ¼ qð1Þþ

fAIð1Þg�1ðvqlRðqð1ÞÞ=vqÞ;
5. Calculate bað2Þ and bbð2Þ

using ~Y
ð1Þ

and qð2Þ;

6. Update ~Y
ð2Þ

using bað2Þ and bbð2Þ
;

7. Repeat steps 4–6, until 2 maxf��baðiÞ � baði�1Þ �� =
ð��baðiÞ��þ ��baði�1Þ �� Þ; ��bqðiÞ � bqði�1Þ �� =ð��bqðiÞ �� þ ��bqði�1Þ �� Þg%
tolerance.
The Score Test

Once ðba; bf; btÞ is estimated under the null hypothesis

H0 : b ¼ 0, the score test can be constructed by evaluating

Equation A4 at ðba; b ¼ 0; bf; btÞ, that is
T ¼ vql

�ba; b ¼ 0; bf; bt�
vb

¼ GTcWbDðy� bmÞ ¼ GTcW�
~Y� bh�

¼ GT bP ~Y :

Its variance under the null hypothesis is
The Am
VarðT j H0Þ ¼ E

(
vql
�ba; b ¼ 0; bf; bt�

vb

vql
�ba; b ¼ 0; bf; bt�

vbT

)
¼ E

�
GT bP ~Y ~Y

T bPG
�
¼ GT bPG;

the last equality holds because bP bS bP ¼ bP.
Appendix B. Additional Simulation Studies

Unrelated Individuals with Population Stratification

We performed additional simulation studies to compare

LMM and GMMAT in unrelated individuals in the pres-

ence of population stratification. We used the coalescent

model29 to simulate genotypes for a total of 16,000 unre-

lated individuals with 1,000,000 genetic variants from a

20 3 20 grid (Figure S1) of spatially continuous popula-

tions (40 individuals per cell) with migration rate between

adjacent cellsM¼ 10 tomimic population structure within

Europe.30,31 For individual i, the probability of being a case

pi was calculated from

logitðpiÞ ¼ a0 þ a1Zi;

where Zi ¼ 1 if individual i was from a 10 3 10 grid in the

top left (population 1) and Zi¼ 0 otherwise (population 2).

The parameters a0 and a1 were chosen such that the dis-

ease prevalence was 0.28 in population 1 (high risk) and

0.05 in population 2 (low risk). Note that the mean

model is not mis-specified when a linear link function is

used, thus our simulation setting is not in favor of logistic

models. We randomly sampled 10,000 individuals to form

a simulated cohort study for common disease (Figure S4)

and calculated their standardized genetic relationship

matrix using 625,504 genetic variants with MAF greater

than 5%. We adjusted for top ten PCs in both models

and combined results from 3,200 null simulation repli-

cates. We compared our method with the strategy in

which population 1 and population 2 were analyzed sepa-

rately using LMMs and the results were subsequently com-

bined in a meta-analysis (which we referred to as LMM

meta), using 100 null simulation replicates (Figure S5).

Moreover, we considered continuous population stratifica-

tion where Zi for each cell is the minimum of its row and

column coordinates in Figure S1, which ranges from 0 to

19, and a0 was chosen such that the disease prevalence

in populations with Zi ¼ 0 was 0.02 and a1 ¼ 0:2

(Figure S6).

We also simulated a case-control study for rare disease

(Figure S7). We chose a0 and a1 such that the disease prev-

alence was 0.045 in population 1 (high risk) and 0.005 in

population 2 (low risk). We randomly sampled 1,667 case

subjects and 8,333 control subjects to form a case-control

study with a total sample size of 10,000 and a case-control

ratio of 1:5. We performed the same analysis as described

above and combined results from 3,200 null simulation

replicates.
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Comparison with the Existing Methods

We also compared GMMAT with ROADTRIPS33 and the

recently developed liability (probit) mixed models.20,21

ROADTRIPS does not allow for covariates. Because

LTMLM21 does not allow covariate adjustment, we used

LEAP20 and set the disease prevalence to 0.015, which is

the pooled prevalence in both high- and low-risk popula-

tion groups. We compared ROADTRIPS and LEAP without

covariates as well as LEAP adjusting for top ten PCs as co-

variates with LMM and GMMAT. The simulation settings

were the same as in Figure S7, but p values from only

one simulation replicate were shown (Figure S8).

Moreover, we simulated three case-control settings with

the same prevalence but different case-control sampling

schemes in two population groups in Figure S1. The disease

prevalence was set to 0.01 in both groups. We compared

ROADTRIPS and LEAP with and without adjusting for

top ten PCs, with LMM and GMMAT.

In the first setting, we randomly sampled 1,250 case sub-

jects and 1,250 control subjects from population 1 and

3,750 case subjects and 3,750 control subjects from popu-

lation 2. This was a balanced case-control study with

balanced designs in both population groups. Because the

case-control ratio was the same, there was no population

stratification (Figure S9).

In the second setting, we randomly sampled 2,000 case

subjects and 500 control subjects from population 1 and

1,500 case subjects and 6,000 control subjects from popu-

lation 2. This was an unbalanced case-control study with

unbalanced designs but equal binary trait variances in

two population groups. Population stratification was

created by different case-control ratios in two population

groups (4:1 in population 1 and 1:4 in population 2),

instead of different disease prevalence (Figure S10).

In the third setting, we randomly sampled 2,500 case

subjects and 200 control subjects from population 1 and

2,500 case subjects and 4,800 control subjects from popu-

lation 2. This was a balanced case-control study with un-

balanced designs and unequal binary trait variances in

two population groups. Because the disease prevalence

was 0.01 in both groups, there were no high-risk or low-

risk groups, but population 1 was the low binary trait vari-

ance group with variance 0.0686 and population 2 was the

high binary trait variance group with variance 0.2252

(Figure S11).
Simulations with Genetic Effects

We first conducted simulation studies to evaluate the per-

formance of GMMAT for estimating the odds ratios of ge-

netic variants in the presence of population stratification.

We used the same genotype data as in our null simulations

of unrelated individuals with population stratification. For

individual i, the probability of being a case pi was calcu-

lated from

logitðpiÞ ¼ a0 þ a1Zi þ bGi;
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where Zi ¼ 1 if individual i was from population 1, Zi ¼ 0

otherwise (population 2). Gi is the additively coded

genotype for the causal genetic variant. The parameters

a0 and a1 were chosen such that the disease prevalence

was 0.28 in population 1 and 0.05 in population 2 for

individuals with Gi ¼ 0. b was chosen such that the

odds ratio varied from 1.0, 1.1, 1.25, 1.5, to 2.0. The

total sample size was 10,000. We compared the odds

ratio estimates and the p values calculated by GMMAT

and MACAU (Figure S12). We then compared the power

of LMM and GMMAT for identifying causal variants

that had lower MAFs in population 1 than population 2

(Table S1).

We also simulated a case-control study with 1,667

case subjects and 8,333 control subjects with no

population stratification. We assumed the disease preva-

lence was 0.01 for individuals with Gi ¼ 0 and used

the same sampling scheme in both population 1 and

population 2. We compared the powers of logistic regres-

sion, LMM, and GMMAT for identifying causal variants

(Table S1).
Supplemental Data

Supplemental Data include 12 figures and 2 tables and can be

found with this article online at http://dx.doi.org/10.1016/j.

ajhg.2016.02.012.
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